Войти
Автожурнал "Форсаж"
  • Процедура пункции фолликулов при эко
  • Расшифровка показателей общего анализа мочи у взрослых
  • Виды, причины и способы лечения дерматита на лице
  • Что показывает биохимический анализ крови при онкологии?
  • Экстренная помощь при асфиксии
  • Лечим суставы ударно-волновой терапией Лечение артроза кистей рук ударно волновой терапией
  • Ядерно-магнитный резонанс (ЯМР) – самый безопасный диагностический метод. Магнитные резонансы Электромагнитный резонанс что

    Ядерно-магнитный резонанс (ЯМР) – самый безопасный диагностический метод. Магнитные резонансы Электромагнитный резонанс что

    Ядерно-магнитный резонанс (ЯМР) – самый безопасный диагностический метод

    Спасибо

    Сайт предоставляет справочную информацию исключительно для ознакомления. Диагностику и лечение заболеваний нужно проходить под наблюдением специалиста. У всех препаратов имеются противопоказания. Консультация специалиста обязательна!

    Общие сведения

    Явление ядерно-магнитного резонанса (ЯМР) было обнаружено в 1938 г. Раби Исааком. В основе явления лежит наличие у ядер атомов магнитных свойств. И только в 2003 году был изобретен способ использования этого явления в диагностических целях в медицине. За изобретение его авторы получили Нобелевскую премию. При спектроскопии изучаемое тело (то есть тело пациента ) помещается в электромагнитное поле и облучается радиоволнами. Это совершенно безопасный метод (в отличие, например, от компьютерной томографии ), который обладает очень высокой степенью разрешающей способности и чувствительностью.

    Применение в экономике и науке

    1. В химии и физике для идентификации веществ, принимающих участие в реакции, а также конечных результатов реакций,
    2. В фармакологии для производства лекарств,
    3. В сельском хозяйстве для определения химического состава зерна и готовности к высеву (очень полезно при селекции новых видов ),
    4. В медицине - для диагностики . Очень информативный метод для диагностики заболеваний позвоночника , особенно межпозвоночных дисков. Дает возможность обнаружить даже самые малые нарушения целостности диска. Выявляет раковые опухоли на ранних стадиях образования.

    Суть метода

    Метод ядерно-магнитного резонанса основан на том, что в момент, когда тело находится в особо настроенном очень сильном магнитном поле (в 10000 раз сильнее, чем магнитное поле нашей планеты ), молекулы воды, присутствующие во всех клетках организма, формируют цепочки, расположенные параллельно направлению магнитного поля.

    Если же внезапно изменить направление поля, молекула воды выделяет частичку электричества. Именно эти заряды фиксируются датчиками прибора и анализируются компьютером. По интенсивности концентрации воды в клетках, компьютер создает модель того органа или части тела, которая изучается.

    На выходе врач имеет монохромное изображение, на котором можно увидеть тонкие срезы органа в мельчайших подробностях. По степени информативности данный метод значительно превышает компьютерную томографию. Иногда деталей об исследуемом органе выдается даже больше, чем нужно для диагностики.

    Виды магнитно-резонансной спектроскопии

    • Биологических жидкостей,
    • Внутренних органов.
    Методика дает возможность в подробностях обследовать все ткани человеческого организма, включающие воду. Чем больше жидкости в тканях, тем светлее и ярче они на картинке. Кости же, в которых воды мало, изображаются темными. Поэтому в диагностике заболеваний кости более информативным является компьютерная томография.

    Методика магнитно-резонансной перфузии дает возможность проконтролировать движение крови через ткани печени и головного мозга .

    На сегодняшний день в медицине более широко используется название МРТ (магнитно-резонансная томография ), так как упоминание ядерной реакции в названии пугает пациентов.

    Показания

    1. Заболевания головного мозга,
    2. Исследования функций отделов головного мозга,
    3. Заболевания суставов,
    4. Заболевания спинного мозга,
    5. Заболевания внутренних органов брюшной полости,
    6. Заболевания системы мочевыведения и воспроизводства,
    7. Заболевания средостения и сердца ,
    8. Заболевания сосудов.

    Противопоказания

    Абсолютные противопоказания:
    1. Кардиостимулятор ,
    2. Электронные или ферромагнитные протезы среднего уха,
    3. Ферромагнитные аппараты Илизарова,
    4. Крупные металлические внутренние протезы,
    5. Кровоостанавливающие зажимы сосудов головного мозга.

    Относительные противопоказания:
    1. Стимуляторы нервной системы,
    2. Инсулиновые насосы,
    3. Другие виды внутренних ушных протезов,
    4. Протезы сердечных клапанов,
    5. Кровоостанавливающие зажимы на других органах,
    6. Беременность (необходимо получить заключение гинеколога ),
    7. Сердечная недостаточность в стадии декомпенсации,
    8. Клаустрофобия (боязнь замкнутого пространства ).

    Подготовка к исследованию

    Специальная подготовка требуется только тем пациентам, которые идут на обследование внутренних органов (мочеполовых и пищеварительного тракта ): не следует употреблять пищу за пять часов до процедуры.
    Если обследованию подвергается голова, представительницам прекрасного пола рекомендуется снять макияж, так как вещества, входящие в косметику (например, в тени для век ), могут повлиять на результат. Все металлические украшения следует с себя снять.
    Иногда медицинский персонал проверяет пациента с помощью портативного металлоискателя.

    Как проводится исследование?

    Перед началом исследования каждый пациент заполняет анкету, помогающую обнаружить противопоказания.

    Прибор представляет собой широкую трубу, в которую помещают пациента в горизонтальном положении. Пациент должен сохранять полную неподвижность, иначе изображение не получится достаточно четким. Внутри трубы не темно и есть приточная вентиляция, так что условия для прохождения процедуры достаточно комфортны. Некоторые установки производит ощутимый гул, тогда исследуемому лицу надеваются шумопоглощающие наушники.

    Длительность обследования может составлять от 15 минут до 60 минут.
    В некоторых медицинских центрах разрешается, чтобы помещении, где проводится исследование, вместе с пациентом находился его родственник или сопровождающий (если у него нет противопоказаний ).

    В некоторых медицинских центрах анестезиолог проводит введение успокоительных препаратов. Процедура в таком случае переносится намного легче, особенно это касается больных, страдающих клаустрофобией, маленьких детей или пациентов, которым по каким-то причинам тяжело находиться в неподвижном состоянии. Пациент впадает в состояние лечебного сна и выходит из него отдохнувшим и бодрым. Используемые препараты быстро выводятся из организма и безопасны для пациента.


    Результат обследования готов уже через 30 минут после окончания процедуры. Результат выдается в виде DVD-диска, заключения врача и снимков.

    Использование контрастного вещества при ЯМР

    Чаще всего процедура проходит без использования контраста. Однако в некоторых случаях это необходимо (для исследования сосудов ). В таком случае контрастное вещество вливается внутривенно с использованием катетера. Процедура аналогична любой внутривенной инъекции. Для этого вида исследования применяются особые вещества – парамагнетики . Это слабые магнитные вещества, частицы которых, находясь во внешнем магнитном поле, намагничиваются параллельно линиям поля.

    Противопоказания к использованию контрастного вещества:

    • Беременность,
    • Индивидуальная непереносимость компонентов контрастного вещества, выявленная ранее.

    Исследование сосудов (магнитно-резонансная ангиография)

    С помощью этого метода можно проконтролировать как состояние кровеносной сети, так и движение крови по сосудам.
    Несмотря на то, что метод дает возможность «увидеть» сосуды и без контрастного вещества, с его использованием изображение получается более наглядным.
    Специальные 4-D установки дают возможность практически в реальном времени проследить за движением крови.

    Показания:

    • Врожденные пороки сердца ,
    • Аневризма , расслоение ее,
    • Стеноз сосудов,

    Исследование головного мозга

    Это исследование головного мозга, не использующее радиоактивные лучи. Метод позволяет увидеть кости черепа, но более детально можно рассмотреть мягкие ткани. Отличный диагностический метод в нейрохирургии, а также неврологии. Дает возможность обнаружить последствия застарелых ушибов и сотрясений , инсультов , а также новообразования.
    Назначается обычно при мигренеподобных состояниях непонятной этиологии, нарушении сознания, новообразованиях, гематомах , нарушении координации.

    При ЯМР головного мозга исследуются:
    • основные сосуды шеи,
    • кровеносные сосуды, питающие головной мозг,
    • ткани головного мозга,
    • орбиты глазниц,
    • более глубоко находящиеся части головного мозга (мозжечок, эпифиз, гипофиз , продолговатый и промежуточный отделы ).

    Функциональная ЯМР

    Данная диагностика основана на том, что при активизации какого-либо отдела головного мозга, отвечающего за определенную функцию, усиливается кровообращение в этой области.
    Обследуемому человеку даются различные задания, и во время их выполнения фиксируется кровообращение в разных частях головного мозга. Полученные в ходе экспериментов данные сравниваются с томограммой, полученной в период покоя.

    Исследование позвоночника

    Этот метод замечательно подходит для исследования нервных окончаний, мышц, костного мозга и связок, а также межпозвоночных дисков. Но при переломах позвоночника или необходимости исследования костных структур, он несколько уступает компьютерной томографии.

    Можно обследовать весь позвоночник, а можно только беспокоящий отдел: шейный, грудной, пояснично-крестцовый, а также отдельно копчик. Так, при обследовании шейного отдела можно обнаружить патологии сосудов и позвонков, которые влияют на кровоснабжение головного мозга.
    При обследовании поясничного отдела можно обнаружить межпозвонковые грыжи , костные и хрящевые шипы, а также ущемления нервов.

    Показания:

    • Изменение формы межпозвонковых дисков, в том числе грыжи,
    • Травмы спины и позвоночника,
    • Остеохондроз , дистрофические и воспалительные процессы в костях,
    • Новообразования.

    Исследование спинного мозга

    Проводится одновременно с обследованием позвоночника.

    Показания:

    • Вероятность новообразований спинного мозга, очаговое поражение,
    • Для контроля над заполнением спинномозговой жидкостью полостей спинного мозга,
    • Кисты спинного мозга,
    • Для контроля над восстановлением после операций,
    • При вероятности заболеваний спинного мозга.

    Исследование суставов

    Данный метод исследования очень эффективен для исследования состояния мягких тканей, входящих в состав сустава.

    Используется для диагностики:

    • Хронических артритов ,
    • Травм сухожилий, мускул и связок (особенно часто используется в спортивной медицине ),
    • Переломов,
    • Новообразований мягких тканей и костей,
    • Повреждений, не обнаруживаемых иными методами диагностики.
    Применяется при:
    • Обследовании тазобедренных суставов при остеомиелите , некрозе головки бедренной кости, стрессовом переломе, артрите септического характера,
    • Обследовании коленных суставов при стрессовых переломах, нарушении целостности некоторых внутренних составляющих (менисков, хрящей ),
    • Обследовании сустава плеча при вывихах , ущемлении нервов, разрыве капсулы сустава,
    • Обследовании лучезапястного сустава при нарушении стабильности, множественных переломах, ущемлении срединного нерва, повреждении связок.

    Исследование височно-нижнечелюстного сустава

    Назначается для определения причин нарушения в функции сустава. Данное исследование наиболее полно раскрывает состояние хрящей и мышц, дает возможность обнаружить вывихи. Применяется и перед ортодонтическими или ортопедическими операциями.

    Показания:

    • Нарушение подвижности нижней челюсти,
    • Щелчки при открывании – закрывании рта,
    • Боли в виске при открывании – закрывании рта,
    • Боль при прощупывании жевательной мускулатуры,
    • Боль в мускулатуре шеи и головы.

    Исследование внутренних органов брюшной полости

    Обследование поджелудочной железы и печени назначается при:
    • Неинфекционной желтухе ,
    • Вероятности новообразования печени, перерождения, абсцесса , кист, при циррозе ,
    • В качестве контроля над ходом лечения,
    • При травматических разрывах,
    • Камнях в желчном пузыре или желчных протоках,
    • Панкреатите любой формы,
    • Вероятности новообразований,
    • Ишемии органов паренхимы.
    Метод позволяет обнаружить кисты поджелудочной железы, исследовать состояние желчных протоков. Выявляются любые формирования, закупоривающие протоки.

    Обследование почек назначается при:

    • Подозрении на новообразование,
    • Заболеваниях органов и тканей, находящихся возле почек,
    • Вероятности нарушения формирования органов мочевыведения,
    • В случае невозможности проведения экскреторной урографии.
    Перед обследованием внутренних органов методом ядерно-магнитного резонанса необходимо провести ультразвуковое обследование.

    Исследование при заболеваниях системы воспроизводства

    Обследования малого таза назначаются при:
    • Вероятности новообразования матки , мочевого пузыря, простаты,
    • Травмах,
    • Новообразованиях малого таза для выявления метастазов,
    • Болях в области крестца,
    • Везикулите,
    • Для обследования состояния лимфатических узлов.
    При раке простаты данное обследование назначается для обнаружения распространения новообразования на органы, находящиеся рядом.

    За час до исследования нежелательно мочиться, так как изображение будет более информативным, если мочевой пузырь несколько заполнен.

    Исследование в период беременности

    Несмотря на то, что этот метод исследования намного более безопасен, чем рентген или компьютерная томография, категорически не разрешается использовать его в первом триместре беременности.
    Во втором и третьем триместрах данных метод назначают только по жизненным показаниям. Опасность процедуры для организма беременной женщины заключается в том, что во время процедуры некоторые ткани нагреваются, что может вызвать нежелательные изменения в формировании плода.
    А вот использование контрастного вещества во время беременности запрещено категорически на любой стадии вынашивания.

    Меры предосторожности

    1. Некоторые ЯМР установки созданы по типу закрытой трубы. У людей, страдающих боязнью замкнутого пространства, может начаться приступ. Поэтому лучше заранее поинтересоваться тем, как будет проходить процедура. Существуют установки открытого типа. Они представляют собой помещение, похожее на рентгеновский кабинет, но такие установки встречаются нечасто.

    2. В помещение, где находится прибор, запрещено входить с металлическими предметами и электронными приборами (например, часами, украшениями, ключами ), так как в мощном электромагнитом поле электронные приборы могут сломаться, а мелкие металлические предметы будут разлетаться. Одновременно с этим будут получены не совсем корректные данные обследования.

    Перед применением необходимо проконсультироваться со специалистом.

    Ядерный магнитный резонанс

    Я́дерный магни́тный резона́нс (ЯМР ) - резонансное поглощение или излучение электромагнитной энергии веществом, содержащимядра с ненулевым спином во внешнем магнитном поле, на частоте ν (называемой частотой ЯМР), обусловленное переориентацией магнитных моментов ядер. Явление ядерного магнитного резонанса было открыто в 1938 году Исааком Раби в молекулярных пучках, за что он был удостоен нобелевской премии 1944 года . В 1946 году Феликс Блох и Эдвард Миллз Парселл получили ядерный магнитный резонанс в жидкостях и твердых телах (нобелевская премия 1952 года). .

    Одни и те же ядра атомов в различных окружениях в молекуле показывают различные сигналы ЯМР. Отличие такого сигнала ЯМР от сигнала стандартного вещества позволяет определить так называемый химический сдвиг, который обусловлен химическим строением изучаемого вещества. В методиках ЯМР есть много возможностей определять химическое строение веществ, конформации молекул, эффекты взаимного влияния, внутримолекулярные превращения.

    Мат.описание Магнитный момент ядра мю=у*lгдеl- спин яра; у- постоянная планка Частота, на которой наблюдается ЯМР

    Химическая поляризация ядер

    При протекании некоторых химических реакций в магнитном поле в спектрах ЯМР продуктов реакции обнаруживается либо аномально большое поглощение, либо радиоизлучение. Этот факт свидетельствует о неравновесном заселении ядерных зеемановских уровней в молекулах продуктов реакции. Избыточная заселённость нижнего уровня сопровождается аномальным поглощением. Инверсная заселённость (верхний уровень заселён больше нижнего) приводит к радиоизлучению. Данное явление называется химической поляризацией ядер

    В ЯМР используется для усиления ядерной намагниченности Ларморовские частоты некоторых атомных ядер

    ядро

    Ларморовская частота в МГц при 0,5 Тесла

    Ларморовская частота в МГц при 1 Тесла

    Ларморовская частота в МГц при 7,05 Тесла

    1 H (Водород )

    ²D (Дейтерий )

    13 C (Углерод )

    23 Na (Натрий )

    39 K (Калий )

    Частота для резонанса протонов находится в диапазоне коротких волн (длина волн около 7 м) .

    Применение ЯМР

    Спектроскопия

    ЯМР-спектроскопия

    Приборы

    Сердцем спектрометра ЯМР является мощный магнит. В эксперименте, впервые осуществленном на практике Пёрселлом, образец, помещенный в стеклянную ампулу диаметром около 5 мм, заключается между полюсами сильного электромагнита. Затем, для улучшения однородности магнитного поля, ампула начинает вращаться, а магнитное поле, действующее на нее, постепенно усиливают. В качестве источника излучения используется радиочастотный генератор высокой добротности. Под действием усиливающегося магнитного поля начинают резонировать ядра, на которые настроен спектрометр. При этом экранированные ядра резонируют на частоте чуть меньшей, чем ядра, лишенные электронных оболочек. Поглощение энергии фиксируется радиочастотным мостом и затем записывается самописцем. Частоту увеличивают до тех пор, пока она не достигнет некого предела, выше которого резонанс невозможен.

    Так как идущие от моста токи весьма малы, снятием одного спектра не ограничиваются, а делают несколько десятков проходов. Все полученные сигналы суммируются на итоговом графике, качество которого зависит от отношения сигнал/шум прибора.

    В данном методе образец подвергается радиочастотному облучению неизменной частоты, в то время как сила магнитного поля изменяется, поэтому его еще называют методом непрерывного облучения (CW, continous wave).

    Традиционный метод ЯМР-спектроскопии имеет множество недостатков. Во-первых, он требует большого количества времени для построения каждого спектра. Во-вторых, он очень требователен к отсутствию внешних помех, и как правило, получаемые спектры имеют значительные шумы. В-третьих, он непригоден для создания спектрометров высоких частот (300, 400, 500 и более МГц). Поэтому в современных приборах ЯМР используется метод так называемой импульсной спектроскопии (PW), основанной на фурье-преобразованияхполученного сигнала. В настоящее время все ЯМР-спектрометры строятся на основе мощных сверхпроводящих магнитов с постоянной величиной магнитного поля.

    В отличие от CW-метода, в импульсном варианте возбуждение ядер осуществляют не «постоянной волной», а с помощью короткого импульса, продолжительностью несколько микросекунд. Амплитуды частотных компонент импульса уменьшаются с увеличением расстояния от ν 0 . Но так как желательно, чтобы все ядра облучались одинаково, необходимо использовать «жесткие импульсы», то есть короткие импульсы большой мощности. Продолжительность импульса выбирают так, чтобы ширина частотной полосы была больше ширины спектра на один-два порядка. Мощность достигает нескольких тысяч ватт.

    В результате импульсной спектроскопии получают не обычный спектр с видимыми пиками резонанса, а изображение затухающих резонансных колебаний, в котором смешаны все сигналы от всех резонирующих ядер - так называемый «спад свободной индукции» (FID, free induction decay ). Для преобразования данного спектра используют математические методы, так называемое фурье-преобразование, по которому любая функция может быть представлена в виде суммы множества гармонических колебаний.

    Спектры ЯМР

    Спектр 1 H 4-этоксибензальдегида. В слабом поле (синглет ~9,25 м.д) сигнал протона альдегидной группы, в сильном (триплет ~1,85-2 м.д.) - протонов метила этоксильной группы.

    Для качественного анализа c помощью ЯМР используют анализ спектров, основанный на таких замечательных свойствах данного метода:

      сигналы ядер атомов, входящих в определенные функциональные группы, лежат в строго определенных участках спектра;

      интегральная площадь, ограниченная пиком, строго пропорциональна количеству резонирующих атомов;

      ядра, лежащие через 1-4 связи, способны давать мультиплетные сигналы в результате т. н. расщепления друг на друге.

    Положение сигнала в спектрах ЯМР характеризуют химическим сдвигом их относительно эталонного сигнала. В качестве последнего в ЯМР 1 Н и 13 С применяют тетраметилсилан Si(CH 3) 4 (ТМС). Единицей химического сдвига является миллионная доля (м.д.) частоты прибора. Если принять сигнал ТМС за 0, а смещение сигнала в слабое поле считать положительным химическим сдвигом, то мы получим так называемую шкалу δ. Если резонанс тетраметилсилана приравнять 10 м.д. и обратить знаки на противоположные, то результирующая шкала будет шкалой τ, практически не используемой в настоящее время. Если спектр вещества слишком сложен для интерпретирования, можно воспользоваться квантовохимическими методами расчета констант экранирования и на их основании соотнести сигналы.

    ЯМР-интроскопия

    Явление ядерного магнитного резонанса можно применять не только в физике и химии, но и в медицине: организм человека - это совокупность все тех же органических и неорганических молекул.

    Чтобы наблюдать это явление, объект помещают в постоянное магнитное поле и подвергают действию радиочастотных и градиентных магнитных полей. В катушке индуктивности, окружающей исследуемый объект, возникает переменная электродвижущая сила (ЭДС), амплитудно-частотный спектр которой и переходные во времени характеристики несут информацию о пространственной плотности резонирующих атомных ядер, а также о других параметрах, специфических только для ядерного магнитного резонанса. Компьютернаяобработка этой информации формирует объёмное изображение, которое характеризует плотность химически эквивалентных ядер, времена релаксации ядерного магнитного резонанса, распределение скоростей потока жидкости, диффузию молекул и биохимические процессы обмена веществ в живых тканях.

    Сущность ЯМР-интроскопии (или магнитно-резонансной томографии) состоит, по сути дела, в реализации особого рода количественного анализа по амплитуде сигнала ядерного магнитного резонанса. В обычной ЯМР-спектроскопии стремятся реализовать, по возможности, наилучшее разрешение спектральных линий. Для этого магнитные системы регулируются таким образом, чтобы в пределах образца создать как можно лучшую однородность поля. В методах ЯМР-интроскопии, напротив, магнитное поле создается заведомо неоднородным. Тогда есть основание ожидать, что частота ядерного магнитного резонанса в каждой точке образца имеет свое собственное значение, отличающееся от значений в других частях. Задав какой-либо код для градаций амплитуды ЯМР-сигналов (яркость или цвет на экране монитора), можно получить условное изображение (томограмму) срезов внутренней структуры объекта.

    ЯМР-интроскопия, ЯМР-томография впервые в мире изобретены в 1960 г. В. А. Ивановым. Заявку на изобретение (способ и устройство) некомпетентный эксперт отклонил «… ввиду явной бесполезности предлагаемого решения», поэтому авторское свидетельство на это было выдано лишь более чем через 10 лет. Таким образом, официально признано, что автором ЯМР-томографии является не коллектив нижеуказанных нобелевских лауреатов, а российский учёный. Невзирая на этот юридический факт, Нобелевская премия была присуждена за ЯМР-томографию вовсе не В. А. Иванову.

    Одни и те же ядра атомов в различных окружениях в молекуле показывают различные сигналы ЯМР. Отличие такого сигнала ЯМР от сигнала стандартного вещества позволяет определить так называемый химический сдвиг , который обусловлен химическим строением изучаемого вещества. В методиках ЯМР есть много возможностей определять химическое строение веществ, конформации молекул, эффекты взаимного влияния, внутримолекулярные превращения.

    Энциклопедичный YouTube

    • 1 / 5

      В основе явления ядерного магнитного резонанса лежат магнитные свойства атомных ядер, состоящих из нуклонов с полуцелым спином 1/2, 3/2, 5/2…. Ядра с чётными массовым и зарядовым числами (чётно-чётные ядра) не обладают магнитным моментом.

      Угловой момент и магнитный момент ядра квантованы, и собственные значения проекции и углового и магнитного моментов на ось z произвольно выбранной системы координат определяются соотношением

      J z = ℏ μ I {\displaystyle J_{z}=\hbar \mu _{I}} и μ z = γ ℏ μ I {\displaystyle \mu _{z}=\gamma \hbar \mu _{I}} ,

      где μ I {\displaystyle \mu _{I}} - магнитное квантовое число собственного состояния ядра, его значения определяются спиновым квантовым числом ядра

      μ I = I , I − 1 , I − 2 , . . . , − I {\displaystyle \mu _{I}=I,I-1,I-2,...,-I} ,

      то есть ядро может находиться в 2 I + 1 {\displaystyle 2I+1} состояниях.

      Так, у протона (или другого ядра с I = 1/2 - 13 C, 19 F, 31 P и т. п.) может находиться только в двух состояниях

      μ z = ± γ ℏ I = ± ℏ / 2 {\displaystyle \mu _{z}=\pm \gamma \hbar I=\pm \hbar /2} ,

      такое ядро можно представить как магнитный диполь , z-компонента которого может быть ориентирована параллельно либо антипараллельно положительному направлению оси z произвольной системы координат.

      Следует отметить, что в отсутствие внешнего магнитного поля все состояния с различными μ z {\displaystyle \mu _{z}} имеют одинаковую энергию, то есть являются вырожденными. Вырождение снимается во внешнем магнитном поле, при этом расщепление относительно вырожденного состояния пропорционально величине внешнего магнитного поля и магнитного момента состояния и для ядра со спиновым квантовым числом I во внешнем магнитном поле появляется система из 2I+1 энергетических уровней − μ z B 0 , − I − 1 I B 0 , . . . , I − 1 I B 0 , μ z B 0 {\displaystyle -\mu _{z}B_{0},-{\frac {I-1}{I}}B_{0},...,{\frac {I-1}{I}}B_{0},\mu _{z}B_{0}} , то есть ядерный магнитный резонанс имеет ту же природу, что и эффект Зеемана расщепления электронных уровней в магнитном поле.

      В простейшем случае для ядра со спином с I = 1/2 - например, для протона, расщепление

      δ E = ± μ z B 0 {\displaystyle \delta E=\pm \mu _{z}B_{0}}

      и разность энергии спиновых состояний

      Δ E = 2 μ z B 0 {\displaystyle \Delta E=2\mu _{z}B_{0}}

      Наблюдение ЯМР облегчается тем, что в большинстве веществ атомы не обладают постоянными магнитными моментами электронов атомных оболочек вследствие явления замораживания орбитального момента .

      Резонансные частоты ЯМР в металлах выше, чем в диамагнетиках (найтовский сдвиг).

      Химическая поляризация ядер

      При протекании некоторых химических реакций в магнитном поле в спектрах ЯМР продуктов реакции обнаруживается либо аномально большое поглощение, либо радиоизлучение. Этот факт свидетельствует о неравновесном заселении ядерных зеемановских уровней в молекулах продуктов реакции. Избыточная заселённость нижнего уровня сопровождается аномальным поглощением. Инверсная заселённость (верхний уровень заселён больше нижнего) приводит к радиоизлучению. Данное явление называется химической поляризацией ядер .

      Ларморовские частоты некоторых атомных ядер

      ядро Ларморовская частота в МГц при 0,5 Тесла Ларморовская частота в МГц при 1 Тесла Ларморовская частота в МГц при 7,05 Тесла
      1 H (Водород) 21,29 42,58 300.18
      ²D (Дейтерий) 3,27 6,53 46,08
      13 C (Углерод) 5,36 10,71 75,51
      23 Na (Натрий) 5,63 11,26 79.40
      39 K (Калий) 1,00 1,99

      Частота для резонанса протонов находится в диапазоне коротких волн (длина волн около 7 м) .

      Применение ЯМР

      Спектроскопия

      Приборы

      Сердцем спектрометра ЯМР является мощный магнит . В эксперименте, впервые осуществлённом на практике Парселлом , образец, помещённый в стеклянную ампулу диаметром около 5 мм, заключается между полюсами сильного электромагнита. Затем, для улучшения однородности магнитного поля, ампула начинает вращаться, а магнитное поле , действующее на неё, постепенно усиливают. В качестве источника излучения используется радиочастотный генератор высокой добротности . Под действием усиливающегося магнитного поля начинают резонировать ядра, на которые настроен спектрометр. При этом экранированные ядра резонируют на частоте, чуть меньшей, чем ядра, лишённые электронных оболочек. Поглощение энергии фиксируется радиочастотным мостом и затем записывается самописцем. Частоту увеличивают до тех пор, пока она не достигнет некого предела, выше которого резонанс невозможен.

      Так как идущие от моста токи весьма малы, снятием одного спектра не ограничиваются, а делают несколько десятков проходов. Все полученные сигналы суммируются на итоговом графике, качество которого зависит от отношения сигнал/шум прибора.

      В данном методе образец подвергается радиочастотному облучению неизменной частоты, в то время как сила магнитного поля изменяется, поэтому его ещё называют методом непрерывного облучения (CW, continous wave).

      Традиционный метод ЯМР-спектроскопии имеет множество недостатков. Во-первых, он требует большого количества времени для построения каждого спектра. Во-вторых, он очень требователен к отсутствию внешних помех, и как правило, получаемые спектры имеют значительные шумы. В-третьих, он непригоден для создания спектрометров высоких частот (300, 400, 500 и более МГц). Поэтому в современных приборах ЯМР используется метод так называемой импульсной спектроскопии (PW), основанной на фурье-преобразованиях полученного сигнала. В настоящее время все ЯМР-спектрометры строятся на основе мощных сверхпроводящих магнитов с постоянной величиной магнитного поля.

      В отличие от CW-метода, в импульсном варианте возбуждение ядер осуществляют не «постоянной волной», а с помощью короткого импульса, продолжительностью несколько микросекунд. Амплитуды частотных компонент импульса уменьшаются с увеличением расстояния от ν 0 . Но так как желательно, чтобы все ядра облучались одинаково, необходимо использовать «жесткие импульсы», то есть короткие импульсы большой мощности. Продолжительность импульса выбирают так, чтобы ширина частотной полосы была больше ширины спектра на один-два порядка. Мощность достигает нескольких тысяч ватт .

      В результате импульсной спектроскопии получают не обычный спектр с видимыми пиками резонанса, а изображение затухающих резонансных колебаний, в котором смешаны все сигналы от всех резонирующих ядер - так называемый «спад свободной индукции» (FID, free induction decay ). Для преобразования данного спектра используют математические методы, так называемое фурье-преобразование , по которому любая функция может быть представлена в виде суммы множества гармонических колебаний .

      Спектры ЯМР

      Для качественного анализа c помощью ЯМР используют анализ спектров, основанный на таких замечательных свойствах данного метода:

      • сигналы ядер атомов, входящих в определённые функциональные группы, лежат в строго определённых участках спектра;
      • интегральная площадь, ограниченная пиком, строго пропорциональна количеству резонирующих атомов;
      • ядра, лежащие через 1-4 связи, способны давать мультиплетные сигналы в результате т. н. расщепления друг на друге.

      Положение сигнала в спектрах ЯМР характеризуют химическим сдвигом их относительно эталонного сигнала. В качестве последнего в ЯМР 1 Н и 13 С применяют тетраметилсилан Si(CH 3) 4 (ТМС). Единицей химического сдвига является миллионная доля (м.д.) частоты прибора. Если принять сигнал ТМС за 0, а смещение сигнала в слабое поле считать положительным химическим сдвигом, то мы получим так называемую шкалу δ. Если резонанс тетраметилсилана приравнять 10 м.д. и обратить знаки на противоположные, то результирующая шкала будет шкалой τ, практически не используемой в настоящее время. Если спектр вещества слишком сложен для интерпретирования, можно воспользоваться квантовохимическими методами расчёта констант экранирования и на их основании соотнести сигналы.

      ЯМР-интроскопия

      Явление ядерного магнитного резонанса можно применять не только в физике и химии , но и в медицине : организм человека - это совокупность все тех же органических и неорганических молекул.

      Чтобы наблюдать это явление, объект помещают в постоянное магнитное поле и подвергают действию радиочастотных и градиентных магнитных полей. В катушке индуктивности, окружающей исследуемый объект, возникает переменная электродвижущая сила (ЭДС), амплитудно-частотный спектр которой и переходные во времени характеристики несут информацию о пространственной плотности резонирующих атомных ядер, а также о других параметрах, специфических только для ядерного магнитного резонанса. Компьютерная обработка этой информации формирует объёмное изображение, которое характеризует плотность химически эквивалентных ядер, времена релаксации ядерного магнитного резонанса, распределение скоростей потока жидкости, диффузию молекул и биохимические процессы обмена веществ в живых тканях.

      Явление магнитного резонанса. Электронный парамагнитный резонанс (ЭПР)

      В предыдущем параграфе рассматривалось расщепление спектральных линий, связанное с переходами между подуровнями расщепленных в магнитном поле разных энергетических уровней. Такие переходы соответствуют оптическому диапазону частот. Наряду с этим в дипольном приближении возможны переходы между соседними подуровнями расщепившегося в магнитном поле уровня энергии согласно правилам отбора:

      Из формулы (3.95) следует, что таким переходам соответствуют частоты:

      При В ~ 0,3 Тл частота v * Ю 10 Гц, а длина волны X ~ 3 см. Это - микроволновый диапазон частот, или диапазон СВЧ. Вероятность дипольных переходов пропорциональна v 3 , поэтому в СВЧ-диапазо- не она ничтожно мала по сравнению с вероятностью в оптическом диапазоне. Кроме того, для атомов с одним валентным электроном переходы в этом случае запрещены правилом отбора AL = ±. Однако вероятность переходов становится значительной при наложении дополнительного внешнего переменного магнитного поля, т. е. когда переходы становятся вынужденными. Из дальнейшего будет ясно, что переменное магнитное поле должно быть перпендикулярным стационарному магнитному полю, вызывающему зеемановское расщепление уровней энергии. Если частота переменного магнитного поля равна частоте перехода (3.101), то происходит поглощение его энергии или вынужденное излучение. При этом скачком изменяется ориентация магнитного момента атома, т. е. его проекция на выделенное направление.

      Излучение или поглощение электромагнитных волн при изменении ориентации магнитных дипольных моментов атомов в магнитном поле называют явлением магнитного резонанса.

      Последовательное описание магнитного резонанса довольно сложно. Качественную картину этого явления можно понять на основе простой классической модели. Если частица обладает магнитным моментом М, то во внешнем постоянном магнитном поле В 0 =(0,0, В 0) на нее действует вращающий момент К = МхВ 0 . Поскольку магнитный М и механический J моменты частицы (например, электрона в атоме) связаны соотношением:

      где у - гиромагнитное отношение, y = gi b /h = eg/2m e , то уравнение движения можно записать в виде:

      Это уравнение волчка, которое показывает, что механический и магнитный моменты совершают прецессию вокруг В 0 . Угловая скорость (частота) этой прецессии равна:

      В магнитном поле, направленном вдоль оси z , частица приобретает дополнительную энергию:

      Частота перехода между соседними подуровнями энергии совпадает с частотой прецессии:

      Рис. 3.34

      Если добавить изменяющееся с частотой ш магнитное поле В, перпендикулярное стационарному полю В 0 (рис. 3.34), то на частицу будет действовать дополнительный переменный вращающий момент [МхВ,1. Когда частоты прецессии и изменения поля В! сильно отличаются друг от друга, то при |В,|z, так что в среднем этот угол не меняется. Однако, если частота изменения поля В, совпадает с частотой прецессии (3.104), то магнитный момент оказывается как бы в статических условиях и дополнительный вращающий момент стремится его «опрокинуть». Поскольку магнитный момент является квантовым вектором, то его проекция на направление статического магнитного поля может измениться только скачком, что соответствует переходу на соседний расщепленный подуровень. В этом и состоит явление магнитного резонанса.

      Если магнитный и механический моменты атома обусловлены его электронами, то в этом случае магнитный резонанс называют электронным парамагнитным резонансом (ЭПР). Когда моменты определяются ядром атома, то магнитный резонанс называют ядерным магнитным резонансом (ЯМР), который впервые наблюдал в опытах с молекулярными пучками Раби в 1938 г. Существуют также ферромагнитный и антиферромагнитный резонансы , связанные с изменением ориентации электронных магнитных моментов в ферромагнетиках и антиферромагнетиках. Далее рассмотрим подробнее ЭПР.

      Электронным парамагнетизмом обладают: все атомы и молекулы с нечетным числом электронов (неспаренные, некомпенсированные электроны) на внешних электронных оболочках, поскольку в этом случае полный спин системы не равен нулю (свободные атомы натрия, газообразный оксид азота и т. д.); атомы и ионы с незаполненной внутренней электронной оболочкой (редкоземельные элементы, актиниды и др.) и т. д. ЭПР представляет собой совокупность явлений, связанных с квантовыми переходами, происходящими между энергетическими уровнями макроскопических систем под влиянием переменного магнитного поля резонансной частоты.

      В эксперименте явление ЭПР впервые наблюдал Е. К. Завойский в 1944 г. ЭПР служит мощным средством изучения свойств парамагнитных веществ в макроскопических количествах. В этом случае имеется не одна, а много частиц, обладающих магнитными моментами. Макроскопической магнитной характеристикой вещества является вектор намагничивания 1 = , где N - число частиц в единице

      объема вещества; - средний магнитный момент частиц. Систему моментов всех парамагнитных частиц данного вещества называют спин-системой. Остальные степени свободы парамагнетика - окружение магнитных моментов - называют «решеткой». В связи с этим рассматривают два типа взаимодействия: магнитных моментов между собой (спин-спиновое взаимодействие) и магнитных моментов со своим окружением (спин-решеточнос взаимодействие). В изолированной спин-системе не происходит стационарного поглощения энергии переменного поля. В самом деле до включения переменного магнитного поля число частиц в основном состоянии больше их числа N 2 в возбужденном состоянии. При поглощении энергии число частиц JV, уменьшается, а число N 2 увеличивается. Это будет происходить, пока N ] и N 2 не сравняются. Тогда достигается насыщение, и дальнейшее поглощение энергии прекращается. С учетом взаимодействия спин-системы с решеткой стационарное поглощение энергии становится возможным. Решетка служит в качестве стока энергии и в процессе нагревается.

      Изменение вектора намагничивания описывается уравнением Блоха:

      где a = (x,y,z)‘ t у - гиромагнитное отношение; 1 0 - равновесное значение вектора намагничивания в постоянном магнитном поле в 0 =(0,0, В 0); т х - время спин-спиновой (или поперечной) релаксации, т х =т у =т 2 ; t z - время спин-решеточной (или продольной)

      релаксации, т^ =т,. Значения величин т, и т 2 зависят от особенностей взаимодействия каждой частицы с окружающими ее частицами. Определение этих времен релаксации является основной экспериментальной задачей метода магнитного резонанса. В уравнении

      (3.106) первый член записан по аналогии с уравнением движения одиночного магнитного момента (3.103). Второй член обусловлен спин-спиновым и спин-решеточным взаимодействиями, которые определяют достижение системой равновесного состояния.

      Поглощаемая парамагнитным веществом мощность излучения /(со) вычисляется с помощью уравнения (3.106). Она определяется формулой

      где А - некоторый множитель; В ] - амплитуда переменного магнитного поля. Форма кривой поглощения определяется функцией

      где о) 0 - частота прецессии, о) 0 =у# 0 .

      Отсюда видно, что поглощение носит резонансный характер (рис. 3.35). Кривая поглощения имеет лоренцевскую форму и достигает максимума при резонансе: со=со 0 . Ширина линии поглощения:

      В достаточно слабом высокочастотном магнитном поле ширина кривой поглощения определяется временем спин-спиновой релаксации. С увеличением этого поля линия поглощения уширяется. По ширине кривой поглощения определяют времена релаксации, которые связаны со свойствами вещества. Для достижения резонанса на опыте оказывается удобнее изменять не частоту о переменного магнитного поля, а частоту прецессии с помощью изменения постоянного магнитного поля.

      На рис. 3.36 изображена одна из простых схем радиоспектроскопа для наблюдения ЭПР - радиоспектроскопа с волноводным мостом. Он содержит стабильный источник ВЧ-излучения - клистрон, настраиваемый объемный резонатор с исследуемым образцом, и измерительную систему для детектирования, усиления и индикации сигнала. Энергия клистрона наполовину идет в плечо резонатора, содержащего исследуемый образец, и наполовину в другое плечо к согласованной нагрузке. При настройке винтом можно сбалансировать мост. Если потом с помощью модуляционных катушек менять постоянное магнитное поле, то при резонансе резко возрастает поглощение энергии образцом, что приводит к разбалансировке моста. Тогда после усиления сигнала осциллограф прописывает резонансную кривую.

      Метод ЭПР обладает высокой чувствительностью. Он позволяет измерять времена релаксации, ядерные магнитные моменты, проводить количественный анализ любых парамагнитных веществ вплоть до 10 -12 г вещества, определять структуру химических соединений.

      электронные конфигурации, измерять слабые напряженности магнитного поля до 79,6 А/м и т. д.

      Покажем, как можно рассчитать мощность излучения, поглощаемого парамагнитным веществом (3.107). Представим переменное магнитное поле, вращающееся по часовой стрелке (в направлении прецессии магнитного момента) в комплексной форме:

      B(t}= = 2?,coso)/-/"#, sinw/ = 2? u +iB ly . Можно также ввести

      комплексный вектор намагничивания /(/)= / и +И { 9 который связан с комплексным вектором переменного магнитного поля соотношением / = х(о>)Я, где x(w) - комплексная магнитная восприимчивость. Такое соотношение вводится аналогично статическому случаю, когда магнитное поле B Q постоянно: / 0 = х 0 ? 0 , где %о~ ста " тическая магнитная восприимчивость. Из уравнений Блоха (3.106) получаем

      В установившемся режиме имеем: - = -/о)/, -- = 0. Тогда из

      системы (3.110) следует система уравнений:

      Решение этой системы:

      Среднюю за период поля поглощаемую мощность можно вычислить по формуле


      Отсюда следует, что поглощаемая мощность определяется мнимой частью комплексной магнитной восприимчивости.

      С помощью метода магнитного резонанса были получены многие фундаментальные результаты. В частности, был измерен аномальный магнитный момент электрона. Оказалось, что спиновый магнитный момент электрона не равен точно одному магнетону Бора, т. е. для электрона гиромагнитное отношение g e ^2. Об этом уже говорилось в §2.7. Был измерен также магнитный момент нейтрона и т. д. На основе этого метода был создан атомно-лучевой стандарт частоты и времени - атомихрон с использованием пучка атомов цезия Cs 133

      1. В свободном ионе Си 2+ не хватает одного электрона в З^-обо- лочке. Определить частоту парамагнитного резонанса в магнитном поле 421,88-10 3 А/м.

      Решение. Основное состояние - /)-состояние (L = 2) со спином 5= 1/2. По правилу Хунда число /= L + 5= 5/2. В отсутствие магнитного поля этот уровень не расщеплен с кратностью вырождения (25+ 1)(2Z.+ 1)= 10. В постоянном магнитном поле уровень расщепляется на 2/+ 1 =6 подуровней. Фактор Ланде g=6/5. Частота парамагнитного резонанса определяется по формуле (3.101).

      ЯДЕРНЫЙ МАГНИТНЫЙ РЕЗОНАНС (ЯМР), явление резонансного поглощения радиочастотной электромагн. энергии в-вом с ненулевыми магн. моментами ядер, находящимся во внеш. постоянном мага. поле. Ненулевым ядерным магн. моментом обладают ядра 1 Н, 2 Н, 13 С, 14 N, 15 N, 19 F, 29 Si, 31 P и др. ЯМР обычно наблюдается в однородном постоянном магн. поле В 0 , на к-рое накладывается слабое радиочастотное поле В 1 перпендикулярное полю В 0 . Для в-в, у к-рых ядерный I= 1 / 2 (1 H, 13 C, 15 N, 19 F, 29 Si, 31 P и др.), в поле В 0 возможны две ориентации магн. ядра "по полю" и "против поля". Возникающие два уровня энергии Е за счет взаимод. магн. момента ядра с полем В 0 разделены интервалом
      При условии, что илигде h - , v 0 - частота радиочастотного поля В 1 , - круговая частота,- т. наз. гиромагн. отношение ядра, наблюдается резонансное поглощение энергии поля B 1 , названное ЯМР. Для 1 H, 13 C, 31 Р частоты ЯМР в поле В 0 = 11,7 Тл равны соотв. (в МГц): 500, 160,42 и 202,4; значения (в МГц/Тл): 42,58, 10,68 и 17,24. Согласно квантовой модели в поле В 0 возникает 2I+1 уровней энергии, переходы между к-рыми разрешены при где т - магн. квантовое число.

      Техника эксперимента. Параметры спектров ЯМР. На явлении ЯМР основана . Спектры ЯМР регистрируют с помощью радиоспектрометров (рис.). Образец исследуемого в-ва помещают как сердечник в катушку генерирующего контура (поле B 1), расположенного в зазоре магнита, создающего поле В 0 так, что При наступает резонансное поглощение, что вызывает падение напряжения на контуре, в схему к-рого включена катушка с образцом. Падение напряжения детектируется, усиливается и подается на развертку осциллографа или записывающее устройство. В совр. радиоспектрометрах ЯМР обычно используют мага, поля напряженностью 1-12 Тл. Область спектра, в к-рой имеется детектируемый сигнал с одним или неск. максимумами, наз. линией поглощения ЯМР. Ширина наблюдаемой линии, измеренная на половине макс. интенсивности и выраженная в Гц, наз. шириной линии ЯМР. Разрешение спектра ЯМР - миним. ширина линии ЯМР, к-рую позволяет наблюдать данный спектрометр. Скорость прохождения - скорость (в Гц/с), с к-рой изменяется напряженность магн. поля или частота воздействующего на образец радиочастотного излучения при получении спектра ЯМР.

      Схема спектрометра ЯМР: 1 - катушка с образцом; 2 - полюса магнита; 3 -генератор радиочастотного поля; 4 -усилитель и детектор; 5 - генератор модулирующего напряжения; 6 - катушки модуляции поля В 0 ; 7 - осциллограф.

      Поглощенную энергию система перераспределяет внутри себя (т. наз. спин-спиновая, или поперечная ; характеристич. время Т 2) и отдает в (спин-решеточная , время Т 1). Времена Т 1 и Т 2 несут информацию о межъядерных расстояниях и временах корреляции разл. мол. движений. Измерения зависимости Т 1 и Т 2 от т-ры и частоты v 0 дают информацию о характере теплового движения, хим. , и др. В с жесткой решеткой Т 2 = 10 мкс, а Т 1 > 10 3 с, т. к. регулярный механизм спин-решеточной отсутствует и обусловлена парамагн. примесями. Из-за малости Т 2 естественная ширина линии ЯМР весьма велика (десятки кГц), их регистрация -область ЯМР широких линий. В малой Т 1 T 2 и измеряется секундами. Соотв. линии ЯМР имеют ширину порядка 10 -1 Гц (ЯМР высокого разрешения). Для неискаженного воспроизведения формы линии надо проходить через линию шириной 0,1 Гц в течение 100 с. Это накладывает существенные ограничения на чувствительность спектрометров ЯМР.
      Основной параметр спектра ЯМР - хим. сдвиг- взятое с соответствующим знаком отношение разности частот наблюдаемого сигнала ЯМР и нек-рого условно выбранного эталонного сигнала к.-л. стандарта к частоте эталонного сигнала (выражается в миллионных долях, м. д.). Хим. сдвиги ЯМР измеряют в безразмерных величинах отсчитанных от пика эталонного сигнала. Если стандарт дает сигнал на частоте v 0 , то В зависимости от природы исследуемых ядер различают протонный ЯМР, или ПМР, и ЯМР 13 С (таблицы величин хим. сдвигов приведены на форзацах тома),. ЯМР 19 F (см. ), ЯМР 31 Р (см. )и т. д. Величины обладают существенной характеристичностью и позволяют определять по спектрам ЯМР наличие определенных мол. фрагментов. Соответствующие данные о хим. сдвигах разл. ядер публикуются в справочных и учебных пособиях, а также заносятся в базы данных, к-рыми снабжаются совр. спектрометры ЯМР. В рядах близких по строению соединений хим. сдвиг прямо пропорционален на соответствующих ядрах.
      Общепринятый стандарт для ПМР и ЯМР 13 С - тетраметилсилан (ТМС). Стандарт м. б. растворен в исследуемом р-ре (внутр. эталон) или помещен, напр., в запаянный капилляр, находящийся внутри ампулы с образцом (внеш. эталон). В качестве р-рителей могут использоваться лишь такие, чье собственное поглощение не перекрывается с областью, представляющей интерес для исследования. Для ПМР лучшие р-рители - те, что не содержат (СС1 4 , CDC1 3 , CS 2 , D 2 O и др.).
      В многоатомных ядра одинаковых , занимающих химически неэквивалентные положения, имеют различающиеся хим. сдвиги, обусловленные различием магн. экранирования ядер валентными (такие ядра наз. анизохронными). Для i-го ядра где- постоянная диамагн. экранирования, измеряемая в м. д. Для типичный интервал изменений- до 20 м. д., для более тяжелых ядер эти интервалы на 2-3 порядка больше.
      Важный параметр спектров ЯМР - спин-спинового взаимод. ( ССВ) - мера непрямого ССВ между разл. магн. ядрами одной (см. ); выражается в Гц.
      Взаимод. ядерных со , содержащимися в между ядрами i и j, приводят к взаимной ориентации этих ядер в поле В 0 (ССВ). При достаточном разрешении ССВ приводит к дополнит. линий, отвечающих определенным значениям хим. сдвигов: где J ij - ССВ; F ij - величины, значения к-рых определяются ядер i и j, соответствующего мол. фрагмента, диэдральными углами между хим. связями и числом этих связей между ядрами, участвующими в ССВ.
      Если хим. сдвиги достаточно велики, т. е. min max (J ij), то ССВ проявляются в виде простых мультиплетов с биномиальным распределением интенсивностей (спектры первого порядка). Так в этильной группе сигнал метильных проявляется в виде с соотношением интенсивностей 1:2:1, а сигнал метиленовых - в виде квадруплета с соотношением интенсивностей 1:3:3:1. В спектрах ЯМР 13 С метиновые группы - дублеты (1:1), а метиленовые и метильные - соотв. и квадруплеты, но с большими, чем в протонных спектpax, значениями ССВ. Хим. сдвиги в спектрах первого порядка равны интервалам между центрами мультиплетов, а J ij - расстояниям между соседними пиками мультиплета. Если условие первого порядка не выполняется, то спектры становятся сложными: в них ни один интервал, вообще говоря, не равен ни ни J ij . Точные значения параметров спектров получают из квантовомех. расчетов. Соответствующие программы входят в мат. обеспечение совр. спектрометров ЯМР. Информативность хим. сдвигов и ССВ превратила высокого разрешения в один из важнейших методов качеств. и количеств. анализа сложных смесей, систем, препаратов и композиций, а также исследования строения и реакц. способности . При изучении , вырожденных и др. динамич. систем, геом. структуры белковых в р-ре, при неразрушающем локальном хим. анализе живых и т. п. возможности методов ЯМР уникальны.

      Ядерная намагниченность в-ва. В соответствии с распределением Больцмана в двухуровневой спин-системе из N отношение числа N + на нижнем уровне к числу N - на верхнем уровне равно где k - ; Т - т-ра. При В 0 = 1 Тл и Т=300 К для отношение N + /N - .= 1,00005. Это отношение и определяет величину ядерной намагниченности в-ва, помещенного в поле B 0 . Магн. момент m каждого ядра совершает прецессионное движение относительно оси z, вдоль к-рой направлено поле B 0 ; частота этого движения равна частоте ЯМР. Сумма проекций прецессирующих ядерных моментов на ось z образует макроскопич. намагниченность в-ва M z = 10 18 В плоскости ху, перпендикулярной оси z, проекции из-за случайности фаз прецессии равны нулю: М xy = 0. Поглощение энергии при ЯМР означает, что в единицу времени с нижнего уровня на верхний переходит больше , чем в обратном направлении, т. е. разность населенностей N + - N - убывает (нагрев спин-системы, насыщение ЯМР). При насыщении в стационарном режиме намагниченность системы может сильно возрасти. Это - т. наз. эффект Оверхаузера, для ядер обозначаемый NOE (Nuclear Overhauser effect), к-рый широко применяется для повышения чувствительности, а также для оценки межъядерных расстояний при изучении мол. геометрии методами .

      Векторная модель ЯМР. При регистрации ЯМР на образец накладывают радиочастотное поле , действующее в плоскости ху. В этой плоскости поле В 1 можно рассматривать как два с амплитудами В 1т/ 2, вращающихся с частотой в противоположных направлениях. Вводят вращающуюся систему координат x"y"z, ось х" к-рой совпадает с В 1т/ 2, вращающимся в том же направлении, что и Его воздействие вызывает изменение угла при вершине конуса прецессии ядерных магн. моментов; ядерная намагниченность М z начинает зависеть от времени, а в плоскости х"у" появляется отличная от нуля проекция ядерной намагниченности. В неподвижной системе координат эта проекция вращается с частотой т. е. в катушке индуктивности наводится радиочастотное напряжение, к-рое после детектирования и дает сигнал ЯМР - ф-цию ядерной намагниченности от частоты различают медленное изменение (свип-режим) и импульсный ЯМР. Реальное сложное движение ядерной намагниченности создает в плоскости х"у" два независимых сигнала: М х, (синфазный с радиочастотным напряжением В 1)и М у" (сдвинутый относительно B 1 по фазе на 90 °С). Одновременная регистрация М х" и M y" (квадратурное детектирование) вдвое повышает чувствительность спектрометра ЯМР. При достаточно большой амплитуде В 1т проекции М z = М х" =М у" =0(насыщение ЯМР). Поэтому при непрерывном действии поля В 1 его амплитуда должна быть весьма малой, чтобы сохранить неизменными исходные условия наблюдения.
      В импульсном ЯМР величина В 1 ,наоборот, выбирается настолько большой, чтобы за время t и Т 2 отклонить во вращающейся системе координат M z от оси z на угол . При= 90° импульс называют 90°-ным (/2-импульс); под его воздействием ядерной намагниченности оказывается в плоскости х"у", т. е. После окончания импульса M y" начинает убывать по амплитуде со временем Т 2 благодаря расхождению по фазе составляющих его элементарных (спин-спиновая ). равновесной ядерной намагниченности М z происходит со временем спин-решеточной T 1 . При= 180° (импульс) M z укладывается вдоль отрицат. направления оси z, релаксируя после окончания импульса к своему равновесному положению. Комбинации иимпульсов широко используются в совр. многоимпульсных вариантах .
      Важной особенностью вращающейся системы координат является различие резонансных частот в ней и в неподвижной системе координат: если B 1 В лок (статич. локальное поле), то М прецессирует во вращающейся системе координат относительно поля При точной настройке в резонанс частота ЯМР во вращающейся системе координат Это позволяет существенно расширить возможности ЯМР при исследовании медленных процессов в в-ве.

      Хим. обмен и спектры ЯМР (динамич. ЯМР). Параметрами двухпозиционного обмена А В служат времена пребывания и а также вероятности пребывания иПри низкой т-ре спектр ЯМР состоит из двух узких линий, отстоящих на Гц; затем при уменьшении и линии начинают уширяться, оставаясь на своих местах. Когда частота обмена начинает превышать исходное расстояние между линиями, линии начинают сближаться, а при 10-кратном превышении образуется одна широкая линия в центре интервала (v A , v B), если При дальнейшем росте т-ры эта объединенная линия становится узкой. Сопоставление эксперим. спектра с расчетным позволяет для каждой т-ры указать точную частоту хим. обмена, по этим данным вычисляют термодинамич. характеристики процесса. При многопозиционном обмене в сложном спектре ЯМР теоретич. спектр получают из квантовомех. расчета. Динамич. ЯМР - один из осн. методов изучения стереохим. нежесткости, конформационных и т. п.

      Вращение под магическим углом. Выражение для потенциала диполь-дипольного взаимод. содержит множители где - угол между В 0 и межъядерным r ij . При=arccos 3 -1/2 = 54°44" ("магический" угол) эти множители обращаются в нуль, т. е. исчезают соответствующие вклады в ширину линии. Если закрутить твердый образец с очень большой скоростью вокруг оси, наклоненной под магич. углом к В 0 , то в можно получить спектры высокого разрешения с почти столь же узкими линиями, как в .

      Широкие линии в . В с жесткой решеткой форма линии ЯМР обусловлена статич. распределением локальных магн. полей. Все ядра решетки, за исключением , в трансляционно-инвариантном объеме V 0 вокруг рассматриваемого ядра, дают гауссово распределение g(v) = exp(-v 2 /2a 2), где v - расстояние от центра линии; ширина гауссианы а обратно пропорциональна среднему геом. объемов V 0 и V 1 ,причем V 1 характеризует среднюю по всему магн. ядер. Внутри V 0 магн. ядер больше средней, и ближние ядра благодаря диполь-дипольному взаимод. и хим. сдвигам создают спектр, ограниченный на интервале (-b, b), где b примерно вдвое больше а. В первом приближении спектр можно считать прямоугольником, тогда фурье-образ линии, т. е. отклик спин-системы на 90°-ный импульс будет