Войти
Автожурнал "Форсаж"
  • Самые загадочные древние народы
  • Наши объекты Развитие строительства в мире
  • От пирамид до кровавого водопада
  • Три страшные тайны советской космонавтики Есть ли тайные полеты в космос
  • Что будет, если не чистить зубы?
  • С чем лучше всего сочетается шоколад?
  • Зарядное устройство балансир li ion своими руками. Литий: балансировка или раздельный заряд? Почему именно литий-ионные

    Зарядное устройство балансир li ion своими руками. Литий: балансировка или раздельный заряд? Почему именно литий-ионные

    Оценка характеристик того или иного зарядного устройства затруднительна без понимания того, как собственно должен протекать образцовый заряд li-ion аккумулятора. Поэтому прежде чем перейти непосредственно к схемам, давайте немного вспомним теорию.

    Какими бывают литиевые аккумуляторы

    В зависимости от того, из какого материала изготовлен положительный электрод литиевого аккумулятора, существует их несколько разновидностей:

    • с катодом из кобальтата лития;
    • с катодом на основе литированного фосфата железа;
    • на основе никель-кобальт-алюминия;
    • на основе никель-кобальт-марганца.

    У всех этих аккумуляторов имеются свои особенности, но так как для широкого потребителя эти нюансы не имеют принципиального значения, в этой статье они рассматриваться не будут.

    Также все li-ion аккумуляторы производят в различных типоразмерах и форм-факторах. Они могут быть как в корпусном исполнении (например, популярные сегодня 18650) так и в ламинированном или призматическом исполнении (гель-полимерные аккумуляторы). Последние представляют собой герметично запаянные пакеты из особой пленки, в которых находятся электроды и электродная масса.

    Наиболее распространенные типоразмеры li-ion аккумуляторов приведены в таблице ниже (все они имеют номинальное напряжение 3.7 вольта):

    Обозначение Типоразмер Схожий типоразмер
    XXYY0 ,
    где XX - указание диаметра в мм,
    YY - значение длины в мм,
    0 - отражает исполнение в виде цилиндра
    10180 2/5 AAA
    10220 1/2 AAA (Ø соответствует ААА, но на половину длины)
    10280
    10430 ААА
    10440 ААА
    14250 1/2 AA
    14270 Ø АА, длина CR2
    14430 Ø 14 мм (как у АА), но длина меньше
    14500 АА
    14670
    15266, 15270 CR2
    16340 CR123
    17500 150S/300S
    17670 2xCR123 (или 168S/600S)
    18350
    18490
    18500 2xCR123 (или 150A/300P)
    18650 2xCR123 (или 168A/600P)
    18700
    22650
    25500
    26500 С
    26650
    32650
    33600 D
    42120

    Внутренние электрохимические процессы протекают одинаково и не зависят от форм-фактора и исполнения АКБ, поэтому все, сказанное ниже, в равной степени относится ко всем литиевым аккумуляторам.

    Как правильно заряжать литий-ионные аккумуляторы

    Наиболее правильным способом заряда литиевых аккумуляторов является заряд в два этапа. Именно этот способ использует компания Sony во всех своих зарядниках. Несмотря на более сложный контроллер заряда, это обеспечивает более полный заряд li-ion аккумуляторов, не снижая срока их службы.

    Здесь речь идет о двухэтапном профиле заряда литиевых аккумуляторов, сокращенно именуемым CC/CV (constant current, constant voltage). Есть еще варианты с ипульсным и ступенчатым токами, но в данной статье они не рассматриваются. Подробнее про зарядку импульсным током можно прочитать .

    Итак, рассмотрим оба этапа заряда подробнее.

    1. На первом этапе должен обеспечиваться постоянный ток заряда. Величина тока составляет 0.2-0.5С. Для ускоренного заряда допускается увеличение тока до 0.5-1.0С (где С - это емкость аккумулятора).

    Например, для аккумулятора емкостью 3000 мА/ч, номинальный ток заряда на первом этапе равен 600-1500 мА, а ток ускоренного заряда может лежать в пределах 1.5-3А.

    Для обеспечения постоянного зарядного тока заданной величины, схема зарядного устройства (ЗУ) должна уметь поднимать напряжение на клеммах аккумулятора. По сути, на первом этапе ЗУ работает как классический стабилизатор тока.

    Важно: если планируется заряд аккумуляторов со встроенной платой защиты (PCB), то при конструировании схемы ЗУ необходимо убедиться, что напряжение холостого хода схемы никогда не сможет превысить 6-7 вольт. В противном случае плата защиты может выйти из строя.

    В момент, когда напряжение на аккумуляторе поднимется до значения 4.2 вольта, аккумулятор наберет приблизительно 70-80% своей емкости (конкретное значение емкости будет зависит от тока заряда: при ускоренном заряде будет чуть меньше, при номинальном - чуть больше). Этот момент является окончанием первого этапа заряда и служит сигналом для перехода ко второму (и последнему) этапу.

    2. Второй этап заряда - это заряд аккумулятора постоянным напряжением, но постепенно снижающимся (падающим) током.

    На этом этапе ЗУ поддерживает на аккумуляторе напряжение 4.15-4.25 вольта и контролирует значение тока.

    По мере набора емкости, зарядный ток будет снижаться. Как только его значение уменьшится до 0.05-0.01С, процесс заряда считается оконченным.

    Важным нюансом работы правильного зарядного устройства является его полное отключение от аккумулятора после окончания зарядки. Это связано с тем, что для литиевых аккумуляторов является крайне нежелательным их длительное нахождение под повышенным напряжением, которое обычно обеспечивает ЗУ (т.е. 4.18-4.24 вольта). Это приводит к ускоренной деградации химического состава аккумулятора и, как следствие снижению его емкости. Под длительным нахождением подразумевается десятки часов и более.

    За время второго этапа заряда, аккумулятор успевает набрать еще примерно 0.1-0.15 своей емкости. Общий заряд аккумулятора таким образом достигает 90-95%, что является отличным показателем.

    Мы рассмотрели два основных этапа заряда. Однако, освещение вопроса зарядки литиевых аккумуляторов было бы неполным, если бы не был упомянут еще один этап заряда - т.н. предзаряд.

    Предварительный этап заряда (предзаряд) - этот этап используется только для глубоко разряженных аккумуляторов (ниже 2.5 В) для вывода их на нормальный эксплуатационный режим.

    На этом этапе заряд обеспечивается постоянным током пониженной величины до тех пор, пока напряжение на аккумуляторе не достигнет значения 2.8 В.

    Предварительный этап необходим для предотвращения вспучивания и разгерметизации (или даже взрыва с возгоранием) поврежденных аккумуляторов, имеющих, например, внутреннее короткое замыкание между электродами. Если через такой аккумулятор сразу пропустить большой ток заряда, это неминуемо приведет к его разогреву, а дальше как повезет.

    Еще одна польза предзаряда - это предварительный прогрев аккумулятора, что актуально при заряде при низких температурах окружающей среды (в неотапливаемом помещении в холодное время года).

    Интеллектуальная зарядка должна уметь контролировать напряжение на аккумуляторе во время предварительного этапа заряда и, в случае, если напряжение долгое время не поднимается, делать вывод о неисправности аккумулятора.

    Все этапы заряда литий-ионного аккумулятора (включая этап предзаряда) схематично изображены на этом графике:

    Превышение номинального зарядного напряжения на 0,15В может сократить срок службы аккумулятора вдвое. Понижение напряжения заряда на 0,1 вольт уменьшает емкость заряженной батареи примерно на 10%, но значительно продляет срок ее службы. Напряжение полностью заряженного аккумулятора после извлечения его из зарядного устройства составляет 4.1-4.15 вольта.

    Резюмирую вышесказанное, обозначим основные тезисы:

    1. Каким током заряжать li-ion аккумулятор (например, 18650 или любой другой)?

    Ток будет зависеть от того, насколько быстро вы хотели бы его зарядить и может лежать в пределах от 0.2С до 1С.

    Например, для аккумулятора типоразмера 18650 емкостью 3400 мА/ч, минимальный ток заряда составляет 680 мА, а максимальный - 3400 мА.

    2. Сколько времени нужно заряжать, например, те же аккумуляторные батарейки 18650?

    Время заряда напрямую зависит от тока заряда и рассчитывается по формуле:

    T = С / I зар.

    Например, время заряда нашего аккумулятора емкостью 3400 мА/ч током в 1А составит около 3.5 часов.

    3. Как правильно зарядить литий-полимерный аккумулятор?

    Любые литиевые аккумуляторы заряжаются одинаково. Не важно, литий-полимерный он или литий-ионный. Для нас, потребителей, никакой разницы нет.

    Что такое плата защиты?

    Плата защиты (или PCB - power control board) предназначена для защиты от короткого замыкания, перезаряда и переразряда литиевой батареи. Как правило в модули защиты также встроена и защита от перегрева.

    В целях соблюдения техники безопасности запрещено использование литиевых аккумуляторов в бытовых приборах, если в них не встроена плата защиты. Поэтому во всех аккумуляторах от сотовых телефонов всегда есть PCB-плата. Выходные клеммы АКБ размещены прямо на плате:

    В этих платах используется шестиногий контроллер заряда на специализированной микрухе (JW01, JW11, K091, G2J, G3J, S8210, S8261, NE57600 и пр. аналоги). Задачей этого контроллера является отключение батареи от нагрузки при полном разряде батареи и отключение аккумулятора от зарядки при достижении 4,25В.

    Вот, например, схема платы защиты от аккумулятора BP-6M, которыми снабжались старые нокиевские телефоны:

    Если говорить об 18650, то они могут выпускаться как с платой защиты так и без нее. Модуль защиты располагается в районе минусовой клеммы аккумулятора.

    Плата увеличивает длину аккумулятора на 2-3 мм.

    Аккумуляторы без PCB-модуля обычно входят в состав батарей, комплектуемых собственными схемами защиты.

    Любой аккумулятор с защитой легко превращается в аккумулятор без защиты, достаточно просто распотрошить его.

    На сегодняшний день максимальная емкость аккумулятора 18650 составляет 3400 мА/ч. Аккумуляторы с защитой обязательно имеют соответствующее обозначение на корпусе ("Protected").

    Не стоит путать PCB-плату с PCM-модулем (PCM - power charge module). Если первые служат только целям защиты аккумулятора, то вторые предназначены для управления процессом заряда - ограничивают ток заряда на заданном уровне, контролируют температуру и, вообще, обеспечивают весь процесс. PCM-плата - это и есть то, что мы называем контроллером заряда.

    Надеюсь, теперь не осталось вопросов, как зарядить аккумулятор 18650 или любой другой литиевый? Тогда переходим к небольшой подборке готовых схемотехнических решений зарядных устройств (тех самых контроллеров заряда).

    Схемы зарядок li-ion аккумуляторов

    Все схемы подходят для зарядки любого литиевого аккумулятора, остается только определиться с зарядным током и элементной базой.

    LM317

    Схема простого зарядного устройства на основе микросхемы LM317 с индикатором заряда:

    Схема простейшая, вся настройка сводится к установке выходного напряжения 4.2 вольта с помощью подстроечного резистора R8 (без подключенного аккумулятора!) и установке тока заряда путем подбора резисторов R4, R6. Мощность резистора R1 - не менее 1 Ватт.

    Как только погаснет светодиод, процесс заряда можно считать оконченным (зарядный ток до нуля никогда не уменьшится). Не рекомендуется долго держать аккумулятор в этой зарядке после того, как он полностью зарядится.

    Микросхема lm317 широко применяется в различных стабилизаторах напряжения и тока (в зависимости от схемы включения). Продается на каждом углу и стоит вообще копейки (можно взять 10 шт. всего за 55 рублей).

    LM317 бывает в разных корпусах:

    Назначение выводов (цоколевка):

    Аналогами микросхемы LM317 являются: GL317, SG31, SG317, UC317T, ECG1900, LM31MDT, SP900, КР142ЕН12, КР1157ЕН1 (последние два - отечественного производства).

    Зарядный ток можно увеличить до 3А, если вместо LM317 взять LM350. Она, правда, подороже будет - 11 руб/шт .

    Печатная плата и схема в сборе приведены ниже:

    Старый советский транзистор КТ361 можно заменить на аналогичный p-n-p транзистор (например, КТ3107, КТ3108 или буржуйские 2N5086, 2SA733, BC308A). Его можно вообще убрать, если индикатор заряда не нужен.

    Недостаток схемы: напряжение питания должно быть в пределах 8-12В. Это связано с тем, что для нормальной работы микросхемы LM317 разница между напряжением на аккумуляторе и напряжением питания должна быть не менее 4.25 Вольт. Таким образом, от USB-порта запитать не получится.

    MAX1555 или MAX1551

    MAX1551/MAX1555 - специализированные зарядные устройства для Li+ аккумуляторов, способные работать от USB или от отдельного адаптера питания (например, зарядника от телефона).

    Единственное отличие этих микросхем - МАХ1555 выдает сигнал для индикатора процесса заряда, а МАХ1551 - сигнал того, что питание включено. Т.е. 1555 в большинстве случаев все-таки предпочтительнее, поэтому 1551 сейчас уже трудно найти в продаже.

    Подробное описание этих микросхем от производителя - .

    Максимальное входное напряжение от DC-адаптера - 7 В, при питании от USB - 6 В. При снижении напряжения питания до 3.52 В, микросхема отключается и заряд прекращается.

    Микросхема сама детектирует на каком входе присутствует напряжение питания и подключается к нему. Если питание идет по ЮСБ-шине, то максимальный ток заряда ограничивается 100 мА - это позволяет втыкать зарядник в USB-порт любого компьютера, не опасаясь сжечь южный мост.

    При питании от отдельного блока питания, типовое значение зарядного тока составляет 280 мА.

    В микросхемы встроена защита от перегрева. Но даже в этом случае схема продолжает работать, уменьшая ток заряда на 17 мА на каждый градус выше 110°C.

    Имеется функция предварительного заряда (см. выше): до тех пор пока напряжение на аккумуляторе находится ниже 3В, микросхема ограничивает ток заряда на уровне 40 мА.

    Микросхема имеет 5 выводов. Вот типовая схема включения:

    Если есть гарантия, что на выходе вашего адаптера напряжение ни при каких обстоятельствах не сможет превысить 7 вольт, то можно обойтись без стабилизатора 7805.

    Вариант зарядки от USB можно собрать, например, на такой .

    Микросхемы не нуждается ни во внешних диодах, ни во внешних транзисторах. Вообще, конечно, шикарные микрухи! Только они маленькие слишком, паять неудобно. И еще стоят дорого ().

    LP2951

    Стабилизатор LP2951 производится фирмой National Semiconductors (). Он обеспечивает реализацию встроенной функции ограничения тока и позволяет формировать на выходе схемы стабильный уровень напряжения заряда литий-ионного аккумулятора.

    Величина напряжения заряда составляет 4,08 - 4,26 вольта и выставляется резистором R3 при отключенном аккумуляторе. Напряжение держится очень точно.

    Ток заряда составляет 150 - 300мА, это значение ограничено внутренними цепями микросхемы LP2951 (зависит от производителя).

    Диод применять с небольшим обратным током. Например, он может быть любым из серии 1N400X, какой удастся приобрести. Диод используется, как блокировочный, для предотвращения обратного тока от аккумулятора в микросхему LP2951 при отключении входного напряжения.

    Данная зарядка выдает довольно низкий зарядный ток, так что какой-нибудь аккумулятор 18650 может заряжаться всю ночь.

    Микросхему можно купить как в DIP-корпусе , так и в корпусе SOIC (стоимость около 10 рублей за штучку).

    MCP73831

    Микросхема позволяет создавать правильные зарядные устройства, к тому же она дешевле, чем раскрученная MAX1555.

    Типовая схема включения взята из :

    Важным достоинством схемы является отсутствие низкоомных мощных резисторов, ограничивающих ток заряда. Здесь ток задается резистором, подключенным к 5-ому выводу микросхемы. Его сопротивление должно лежать в диапазоне 2-10 кОм.

    Зарядка в сборе выглядит так:

    Микросхема в процессе работы неплохо так нагревается, но это ей вроде не мешает. Свою функцию выполняет.

    Вот еще один вариант печатной платы с smd светодиодом и разъемом микро-USB:

    LTC4054 (STC4054)

    Очень простая схема, отличный вариант! Позволяет заряжать током до 800 мА (см. ). Правда, она имеет свойство сильно нагреваться, но в этом случае встроенная защита от перегрева снижает ток.

    Схему можно существенно упростить, выкинув один или даже оба светодиодов с транзистором. Тогда она будет выглядеть вот так (согласитесь, проще некуда: пара резисторов и один кондер):

    Один из вариантов печатной платы доступен по . Плата рассчитана под элементы типоразмера 0805.

    I=1000/R . Сразу большой ток выставлять не стоит, сначала посмотрите, насколько сильно будет греться микросхема. Я для своих целей взял резистор на 2.7 кОм, при этом ток заряда получился около 360 мА.

    Радиатор к этой микросхеме вряд ли получится приспособить, да и не факт, что он будет эффективен из-за высокого теплового сопротивления перехода кристалл-корпус. Производитель рекомендует делать теплоотвод "через выводы" - делать как можно более толстые дорожки и оставлять фольгу под корпусом микросхемы. И вообще, чем больше будет оставлено "земляной" фольги, тем лучше.

    Кстати говоря, бОльшая часть тепла отводится через 3-ю ногу, так что можно сделать эту дорожку очень широкой и толстой (залить ее избыточным количеством припоя).

    Корпус микросхемы LTC4054 может иметь маркировку LTH7 или LTADY.

    LTH7 от LTADY отличаются тем, что первая может поднять сильно севший аккумулятор (на котором напряжение меньше 2.9 вольт), а вторая - нет (нужно отдельно раскачивать).

    Микросхема вышла очень удачной, поэтому имеет кучу аналогов: STC4054, MCP73831, TB4054, QX4054, TP4054, SGM4054, ACE4054, LP4054, U4054, BL4054, WPM4054, IT4504, Y1880, PT6102, PT6181, VS6102, HX6001, LC6000, LN5060, CX9058, EC49016, CYT5026, Q7051. Прежде, чем использовать какой-либо из аналогов, сверяйтесь по даташитам.

    TP4056

    Микросхема выполнена в корпусе SOP-8 (см. ), имеет на брюхе металлический теплосьемник не соединенный с контактами, что позволяет эффективнее отводить тепло. Позволяет заряжать аккумулятор током до 1А (ток зависит от токозадающего резистора).

    Схема подключения требует самый минимум навесных элементов:

    Схема реализует классический процесс заряда - сначала заряд постоянным током, затем постоянным напряжением и падающим током. Все по-научному. Если разобрать зарядку по шагам, то можно выделить несколько этапов:

    1. Контроль напряжения подключенного аккумулятора (это происходит постоянно).
    2. Этап предзаряда (если аккумулятор разряжен ниже 2.9 В). Заряд током 1/10 от запрограммированного резистором R prog (100мА при R prog = 1.2 кОм) до уровня 2.9 В.
    3. Зарядка максимальным током постоянной величины (1000мА при R prog = 1.2 кОм);
    4. При достижении на батарее 4.2 В, напряжение на батарее фиксируется на этому уровне. Начинается плавное снижение зарядного тока.
    5. При достижении тока 1/10 от запрограммированного резистором R prog (100мА при R prog = 1.2кОм) зарядное устройство отключается.
    6. После окончания зарядки контроллер продолжает мониторинг напряжения аккумулятора (см. п.1). Ток, потребляемый схемой мониторинга 2-3 мкА. После падения напряжения до 4.0В, зарядка включается снова. И так по кругу.

    Ток заряда (в амперах) рассчитывается по формуле I=1200/R prog . Допустимый максимум - 1000 мА.

    Реальный тест зарядки с аккумулятором 18650 на 3400 мА/ч показан на графике:

    Достоинство микросхемы в том, что ток заряда задается всего лишь одним резистором. Не требуются мощные низкоомные резисторы. Плюс имеется индикатор процесса заряда, а также индикация окончания зарядки. При неподключенном аккумуляторе, индикатор моргает с периодичностью раз в несколько секунд.

    Напряжение питания схемы должно лежать в пределах 4.5...8 вольт. Чем ближе к 4.5В - тем лучше (так чип меньше греется).

    Первая нога используется для подключения датчика температуры, встроенного в литий-ионную батарею (обычно это средний вывод аккумулятора сотового телефона). Если на выводе напряжение будет ниже 45% или выше 80% от напряжения питания, то зарядка приостанавливается. Если контроль температуры вам не нужен, просто посадите эту ногу на землю.

    Внимание! У данной схемы есть один существенный недостаток: отсутствие схемы защиты от переполюсовки батареи. В этом случае контроллер гарантированно выгорает из строя из-за превышения максимального тока. При этом напряжение питания схемы напрямую попадает на аккумулятор, что очень опасно.

    Печатка простая, делается за час на коленке. Если время терпит, можно заказать готовые модули. Некоторые производители готовых модулей добавляют защиту от перегрузки по току и переразряда ( , например, можно выбрать какая плата вам нужна - с защитой или без, и с каким разъемом).

    Так же можно найти готовые платы с выведенным контактом под температурный датчик. Или даже модуль зарядки с несколькими запараллеленными микросхемами TP4056 для увеличения зарядного тока и с защитой от переполюсовки (пример).

    LTC1734

    Тоже очень простая схема. Ток заряда задается резистором R prog (например, если поставить резистор на 3 кОм, ток будет равен 500 мА).

    Микросхемы обычно имеют маркировку на корпусе: LTRG (их можно часто встретить в старых телефонах от самсунгов).

    Транзистор подойдет вообще любой p-n-p, главное, чтобы он был рассчитан на заданный ток зарядки.

    Индикатора заряда на указанной схеме нет, но в на LTC1734 сказано, что вывод "4" (Prog) имеет две функции - установку тока и контроль окончания заряда батареи. Для примера приведена схема с контролем окончания заряда при помощи компаратора LT1716.

    Компаратор LT1716 в данном случае можно заменить дешевым LM358.

    TL431 + транзистор

    Наверное, сложно придумать схему из более доступных компонентов. Здесь самое сложное - это найти источник опорного напряжение TL431. Но они настолько распространены, что встречаются практически повсюду (редко какой источник питания обходится без этой микросхемы).

    Ну а транзистор TIP41 можно заменить любым другим с подходящим током коллектора. Подойдут даже старые советские КТ819, КТ805 (или менее мощные КТ815, КТ817).

    Настройка схемы сводится к установке выходного напряжения (без аккумулятора!!!) с помощью подстроечного резистора на уровне 4.2 вольта. Резистор R1 задает максимальное значение зарядного тока.

    Данная схема полноценно реализует двухэтапный процесс заряда литиевых аккумуляторов - сначала зарядка постоянным током, затем переход к фазе стабилизации напряжения и плавное снижение тока практически до нуля. Единственный недостаток - плохая повторяемость схемы (капризна в настройке и требовательна к используемым компонентам).

    MCP73812

    Есть еще одна незаслуженно обделенная вниманием микросхема от компании Microchip - MCP73812 (см. ). На ее базе получается очень бюджетный вариант зарядки (и недорогой!). Весь обвес - всего один резистор!

    Кстати, микросхема выполнена в удобном для пайки корпусе - SOT23-5.

    Единственный минус - сильно греется и нет индикации заряда. Еще она как-то не очень надежно работает, если у вас маломощный источник питания (который дает просадку напряжения).

    В общем, если для вас индикация заряда не важна, и ток в 500 мА вас устраивает, то МСР73812 - очень неплохой вариант.

    NCP1835

    Предлагается полностью интегрированное решение - NCP1835B, обеспечивающее высокую стабильность зарядного напряжения (4.2 ±0.05 В).

    Пожалуй, единственным недостатком данной микросхемы является ее слишком миниатюрный размер (корпус DFN-10, размер 3х3 мм). Не каждому под силу обеспечить качественную пайку таких миниатюрных элементов.

    Из неоспоримых преимуществ хотелось бы отметить следующее:

    1. Минимальное количество деталей обвеса.
    2. Возможность зарядки полностью разряженной батареи (предзаряд током 30мА);
    3. Определение окончания зарядки.
    4. Программируемый зарядный ток - до 1000 мА.
    5. Индикация заряда и ошибок (способна детектировать незаряжаемые батарейки и сигнализировать об этом).
    6. Защита от продолжительного заряда (изменяя емкость конденсатора С т, можно задать максимальное время заряда от 6,6 до 784 минут).

    Стоимость микросхемы не то чтобы копеечная, но и не настолько большая (~1$), чтобы отказаться от ее применения. Если вы дружите с паяльником, я бы порекомендовал остановить свой выбор на этом варианте.

    Более подробное описание находится в .

    Можно ли заряжать литий-ионный аккумулятор без контроллера?

    Да, можно. Однако это потребует плотного контроля за зарядным током и напряжением.

    Вообще, зарядить АКБ, к примеру, наш 18650 совсем без зарядного устройства не получится. Все равно нужно как-то ограничивать максимальный ток заряда, так что хотя бы самое примитивное ЗУ, но все же потребуется.

    Самое простейшее зарядное устройство для любого литиевого аккумулятора - это резистор, включенный последовательно с аккумулятором:

    Сопротивление и мощность рассеяния резистора зависят от напряжения источника питания, который будет использоваться для зарядки.

    Давайте в качестве примера, рассчитаем резистор для блока питания напряжением 5 Вольт. Заряжать будем аккумулятор 18650, емкостью 2400 мА/ч.

    Итак, в самом начале зарядки падение напряжение на резисторе будет составлять:

    U r = 5 - 2.8 = 2.2 Вольта

    Предположим, наш 5-вольтовый блок питания рассчитан на максимальный ток 1А. Самый большой ток схема будет потреблять в самом начале заряда, когда напряжение на аккумуляторе минимально и составляет 2.7-2.8 Вольта.

    Внимание: в данных расчетах не учитывается вероятность того, что аккумулятор может быть очень глубоко разряжен и напряжение на нем может быть гораздо ниже, вплоть до нуля.

    Таким образом, сопротивление резистора, необходимое для ограничения тока в самом начале заряда на уровне 1 Ампера, должно составлять:

    R = U / I = 2.2 / 1 = 2.2 Ом

    Мощность рассеивания резистора:

    P r = I 2 R = 1*1*2.2 = 2.2 Вт

    В самом конце заряда аккумулятора, когда напряжение на нем приблизится к 4.2 В, ток заряда будет составлять:

    I зар = (U ип - 4.2) / R = (5 - 4.2) / 2.2 = 0.3 А

    Т.е., как мы видим, все значения не выходят за рамки допустимых для данного аккумулятора: начальный ток не превышает максимально допустимый ток заряда для данного аккумулятора (2.4 А), а конечный ток превышает ток, при котором аккумулятор уже перестает набирать емкость (0.24 А).

    Самый главный недостаток такой зарядки состоит в необходимости постоянно контролировать напряжение на аккумуляторе. И вручную отключить заряд, как только напряжение достигнет 4.2 Вольта. Дело в том, что литиевые аккумуляторы очень плохо переносят даже кратковременное перенапряжение - электродные массы начинают быстро деградировать, что неминуемо приводит к потери емкости. Одновременно с этим создаются все предпосылки для перегрева и разгерметизации.

    Если в ваш аккумулятор встроена плата защиты, о которых речь шла чуть выше, то все упрощается. По достижении определенного напряжение на аккумуляторе, плата сама отключит его от зарядного устройства. Однако такой способ зарядки имеет существенные минусы, о которых мы рассказывали в .

    Защита, встроенная в аккумулятор не позволит его перезарядить ни при каких обстоятельствах. Все, что вам остается сделать, это проконтролировать ток заряда, чтобы он не превысил допустимые значения для данного аккумулятора (платы защиты не умеют ограничивать ток заряда, к сожалению).

    Зарядка при помощи лабораторного блока питания

    Если в вашем распоряжении имеется блок питания с защитой (ограничением) по току, то вы спасены! Такой источник питания уже является полноценным зарядным устройством, реализующим правильный профиль заряда, о котором мы писали выше (СС/СV).

    Все, что нужно сделать для зарядки li-ion - это выставить на блоке питания 4.2 вольта и установить желаемое ограничение по току. И можно подключать аккумулятор.

    Вначале, когда аккумулятор еще разряжен, лабораторный блок питания будет работать в режиме защиты по току (т.е. будет стабилизировать выходной ток на заданном уровне). Затем, когда напряжение на банке поднимется до установленных 4.2В, блок питания перейдет в режим стабилизации напряжения, а ток при этом начнет падать.

    Когда ток упадет до 0.05-0.1С, аккумулятор можно считать полностью заряженным.

    Как видите, лабораторный БП - практически идеальное зарядное устройство! Единственное, что он не умеет делать автоматически, это принимать решение о полной зарядке аккумулятора и отключаться. Но это мелочь, на которую даже не стоит обращать внимания.

    Как заряжать литиевые батарейки?

    И если мы говорим об одноразовой батарейке, не предназначенной для перезарядки, то правильный (и единственно верный) ответ на этот вопрос - НИКАК.

    Дело в том, что любая литиевая батарейка (например, распространенная CR2032 в виде плоской таблетки) характеризуется наличием внутреннего пассивирующего слоя, которым покрыт литиевый анод. Этот слой предотвращает химическую реакцию анода с электролитом. А подача стороннего тока разрушает вышеуказанный защитный слой, приводя к порче элемента питания.

    Кстати, если говорить о незаряжаемой батарейке CR2032, то есть очень похожая на нее LIR2032 - это уже полноценный аккумулятор. Ее можно и нужно заряжать. Только у нее напряжение не 3, а 3.6В.

    О том же, как заряжать литиевые аккумуляторы (будь то аккумулятор телефона, 18650 или любой другой li-ion аккумулятор) шла речь в начале статьи.

    85 коп/шт. Купить MCP73812 65 руб/шт. Купить NCP1835 83 руб/шт. Купить *Все микросхемы с бесплатной доставкой

    Многие технологии в области накопления электрической энергии получают свое развитие и становятся все более популярными, но литий-ионная технология накопления электрической энергии на данный момент является наиболее перспективной для нынешнего поколения электрических транспортных средств (электромобилей).

    В отличии от тех же свинцово-кислотных аккумуляторных батарей литий-ионные (Li-ion) аккумуляторные батареи требуют лучшего ухода и более требовательны к зарядке. Зарядка требует гораздо большего, чем просто подключения к сети. Даже разрядка аккумулятора в определенный момент может привести к необратимым повреждениям. Это привело к разработке довольно сложной стратегии зарядки и разрядки на уровне отдельных ячеек.

    Почему именно литий-ионные?

    Литий имеет атомный номер 3 – он самый легкий из металлов. Он обладает большим электрохимическим потенциалом и обладает большой удельной энергией на единицу веса – что является огромным преимуществом для аккумуляторов. К сожалению не все так гладко. Помимо положительных качеств литий имеет и отрицательные качества, такие как неустойчивость, взрывоопасность и легкая воспламеняемость при контакте с водой или воздухом. Следует отметить, что исследования по применению более безопасных материалов велись ранее и ведутся сейчас.

    Положительный электрод литий-ионной батареи может использовать один из множества интеркалированных соединений лития, например, таких как фосфат лития железа (lithium iron phosphate LFP), оксид кобальта-марганца-никеля-лития (nickel manganese cobalt NMC), имеющих немного различные характеристики. Отрицательный электрод, как правило, изготавливают из графита.

    Жидкий электролит состоит из солей лития в органическом растворителе, например в таком как диметилкарбонат или этиленкарбонат. Во время работы аккумуляторной батареи ионы лития переходят от положительного электрода к отрицательному (во время разрядки), и, наоборот, во время зарядки.

    Литий-ионные батареи имеют ряд преимуществ над другими, например, свинцово-кислотными и никель-металл-гидридными (Ni-MH). Они легкие, не имеют памяти, имеют низкий уровень саморазряда (порядка 1% в неделю). Номинальное напряжение одной ячейки составляет порядка 3,6 В, в то время как для никель-металл-гидридных порядка 1,5 В, а для свинцово-кислотных 2,0 В. Это позволяет при одних и тех же габаритах получить большее напряжение, необходимое для питания электрических транспортных средств.

    Например, батарея в Nissan Leaf содержит 192 литий-ионные ячейки с NMC (смотри выше) и графитовых электродов. Ячейки расположены в виде 96х2 параллельно-последовательного массива для получения на выходе 360 В и плотности энергии 140 Вт*ч/кг. В 1996 году компания General Motors начала серийный выпуск электромобилей (EV1) с использованием свинцово-кислотных аккумуляторов с выходным напряжением 312 В и плотностью энергии всего лишь 31 Вт*ч/кг.

    Опасность при эксплуатации

    Помимо положительных качеств литий-ионных аккумуляторов существуют и отрицательные. В отличии от других типов аккумуляторов они очень чувствительны к разряду, перезарядке, перегреву и сверхтокам.

    Данные качества могут вызывать опасные ситуации не только в автомобильном транспорте. Например в 2013 году в течении трех месяцев были приостановлены полеты самолета Boeing 787 Dreamliner после того как причиной двух возникших на борту пожаров признали именно тепловой пробой литий-ионных аккумуляторов.

    Ключевые параметры батарей

    В любом транспортном средстве, которое зависит от аккумуляторных батарей как от части трансмиссии важно, чтоб система управления батареи (BMS battery-management system) непрерывно отслеживала ее состояние независимо от типа аккумуляторных батарей. Это касается как обычных автомобилей с двигателями внутреннего сгорания, где аккумулятор необходим для запуска двигателя, для гибридных автомобилей, использующих как электродвигатели так двигатели внутреннего сгорания, так и электромобилей, которые для движения используют только электродвигатели.

    Обычно используют два параметра для оценки состояния аккумулятора или ячейки:

    • Состояние заряда (State of charge SoC) – можно сравнить с датчиком уровня топлива автомобиля. Он измеряет энергию батареи от 0% (разряжено) до 100% (полностью заряжено). Обратная метрика – это глубина разряда (depth of discharge DoD).
    • Состояние работоспособности (State of health SoH) – фигура сравнения, оценивает состояние батареи или ячейки по отношению к ее идеальному состоянию (если аккумулятор имеет характеристики для сравнения). SoH обычно начинается со 100% и постепенно уменьшается со старением батареи.

    BMS обычно использует SoC и SoH для регулировки производительности и наблюдения за работоспособностью аккумуляторов.

    Зарядка и разрядка происходят через терминалы, соединенные с каждым концом стека группы, а не на уровне ячейки. В свинцово-кислотных и никель-металлогидридных системах измерение и контроль отдельных ячеек не нужен, так как они менее чувствительны к неполной зарядке. Литий-ионные аккумуляторы требуют более сложного подхода.

    Измерение заряда ячейки

    Заряд отдельной ячейки можно определить с помощью измерения напряжения разомкнутой цепи (open-circuit voltage OCV) и вывести соответствующее состояние заряда или разряда из графика, который должен быть аналогичен показанному ниже:

    Результаты могут вычислений могут быть улучшены за счет применения различных поправочных коэффициентов, например токовых и температурных. Производители все время совершенствовали и совершенствуют свои изделия, и это позволило аккумуляторным батареям поддерживать постоянное выходное напряжение практически во всем диапазоне заряда.

    Как бы это странно не звучало, но такое улучшение лишь усложнило систему управления в получении обратной связи. Это вызвано тем, что мизерные различия в напряжениях аккумуляторах в реальности могут означать значительную разницу их зарядов. Точность измерения напряжения должна быть огромна (до нескольких милливольт), что требует высокой точности (analog-to-digital converter ADC).

    14 разрядный 5 вольтовый АЦП является хорошим выбором для практического измерения напряжения ячейки (open-circuit voltage OCV) с напряжением до 4,2 В. Как правило, один АЦП измеряет напряжение не одной ячейки, а нескольких, при этом используется мультиплексор для переключения между каналами измерений. Использование структуры с последовательным приближением регистра (successive-approximation-register SAR) является более предпочтительным, так как не имеет задержки между последовательными замерами.

    После того как заряд каждой ячейки измерен, система балансировки нагрузки приступает к выравнивания зарядов. Для балансировки могут применять один из подходов – пассивную балансировку и активную балансировку.

    Пассивная балансировка нагрузки

    Система пассивной балансировки получает энергию непосредственно от самой ячейки и рассеивает ее в виде тепла на резисторе. На рисунке ниже показана схема для одной ячейки стека:

    Здесь значение VSENSEn+1 будет показателем заряда Celln+1. Когда заряд ячейки слишком высок, Qn+1 включается и энергия рассеивается на резисторе Rdisch_n+1.
    Алгоритм управления, работающий на контроллере BMS (Battery Management System), уравновешивает заряд каждой ячейки путем измерения напряжения на ней и разрядки ее (если это необходимо) до тех пор, пока напряжения на ячейках группы не выровняются. BMS выполняет также функции диагностики батареи — такие как перегрев, перезарядка, недозарядка и так далее. После балансировки аккумуляторная батарея заряжается таким образом, чтоб в нужной степени зарядить каждую ячейку.

    Активная балансировка нагрузки

    Пассивная балансировка – система однонаправленная, она может только поглощать заряд ячейки. Активная балансировка более сложная. Она не рассеивает энергию ячейки, а из более заряженной ячейки переносит энергию в менее заряженную через ряд двунаправленных DC-DC преобразователей. Микроконтроллер следит за зарядами каждого элемента и определяет какая ячейка должна быть разряжена, а какая заряжена.
    Ниже показана блок схема типичного активного балансировщика нагрузки:

    Активная система балансировки нагрузки использует двунаправленные преобразователи постоянного тока для источника или поглотителя тока под управлением микроконтроллера BMS.
    Матричный коммутатор обеспечивает маршрутизацию зарядов в, или из ячеек, которые находятся под управлением микроконтроллера BMS через SPY или другой интерфейс. Матричный коммутатор подключается к DC-DC преобразователям, которые регулируют ток (он может быть как положителен, так и отрицателен) каждой ячейки, которую нужно зарядить или разрядить. Несколько блоков могут работать параллельно для балансировки целого стека.
    Изолированный DC-DC преобразователь обменивается энергией между ячейкой и стеком аккумулятора. Вместо использования резистора и рассеивания тепла, величина тока перетекающего при зарядке-разрядке контролируется алгоритмом балансировки нагрузки.

    Тенденции развития аккумуляторных батарей

    Стоимость аккумуляторных батарей для электромобилей снизилась с 1000$ за киловатт-час в 2007 году, до 450$ в 2014 году. У некоторых ведущих мировых производителей аккумуляторов цена за киловатт-час достигает 300$. Тенденции развития данных технологий указывают на то, что к 2020 году цена за киловатт-час может быть снижена до 250$.
    Исследование в области накопления энергии ведутся во всех ВУЗах и лабораториях мира и практически ежемесячно мы слышим об очередном открытии в этой области.
    Развитие рынка электроники тоже позволяет упрощать и совершенствовать технологии изготовления и эксплуатации аккумуляторных батарей, а также совершенствовать их в вопросах безопасности. Это позволяет изготавливать более узкоспециализированные изделия, ориентированные под выполнение меньшего количества задач, но с более высоким качеством и производительностью.

    Как изготавливают литий-ионные батареи расскажет видео внизу:

    Обычно в любой системе, состоящей из нескольких последовательно включенных батарей, возникает проблема разбалансировки заряда отдельных батарей. Выравнивание заряда - это метод проектирования, позволяющий увеличить безопасность эксплуатации батарей, время работы без подзарядки и срок службы.Новейшие микросхемы защиты батарей и указатели заряда компании Texas Instruments - BQ2084, семейства BQ20ZXX, BQ77PL900 и BQ78PL114, представленные в производственной линейке компании, - необходимы для реализации этого метода.

    ЧТО ТАКОЕ РАЗБАЛАНСИРОВКА БАТАРЕЙ?

    Перегрев или перезаряд ускоряют износ батареи и могут вызвать воспламенение или даже взрыв. Программно-аппаратные средства защиты уменьшают опасность. В блоке из многих батарей, включенных последовательно (обычно такие блоки применяются в лаптопах и медицинском оборудовании) существует возможность разбалансировки батарей, что ведет к их медленной, но неуклонной деградации.
    Не существует двух одинаковых батарей, всегда есть небольшие отличия в состоянии заряда батарей (СЗБ), саморазряда, емкости, сопротивлении и температурных характеристиках, даже если речь идет о батареях одинаковых типов, от одного производителя и даже из одной производственной партии. При формировании блока из нескольких батарей производитель обычно подбирает схожие по СЗБ батареи посредством сравнения напряжений на них. Однако отличия в параметрах отдельных батарей все равно остаются, а со временем могут и возрасти. Большинство зарядных устройств определяет полный заряд по суммарному напряжению всей цепочки последовательно включенных батарей. Поэтому напряжение заряда отдельных батарей может варьироваться в широких пределах, но не превышать порогового значения напряжения, при котором включается защита от перезаряда. Однако в слабом звене - батарее с малой емкостью или большим внутренним сопротивлением напряжение может быть выше, чем на остальных полностью заряженных батареях. Дефектность такой батареи проявится позже при длительном цикле разряда. Высокое напряжение такой батареи после завершения заряда свидетельствует об ее ускоренной деградации. При разряде по тем же причинам (большое внутренне сопротивление и малая емкость) на этой батарее будет наименьшее напряжение. Сказанное означает, что при заряде на слабой батарее может сработать защита от перенапряжения, в то время как остальные батареи блока еще не будут заряжены полностью. Это приведет к недоиспользованию ресурсов батарей.

    МЕТОДЫ БАЛАНСИРОВКИ

    Разбалансировка батарей оказывает существенное нежелательное воздействие на время работы без подзарядки и срок службы. Выравнивание напряжения и СЗБ батарей лучше всего производить при их полном заряде. Существуют два метода балансировки батарей - активный и пассивный. Последний иногда называют «резисторной балансировкой». Пассивный метод довольно прост: разряд батарей, нуждающихся в балансировке, производят через байпасные цепи, рассеивающие мощность. Эти байпасные цепочки могут быть интегрированы в батарейный блок или помещаться во внешней микросхеме. Такой метод предпочтительно использовать в недорогих приложениях. Практически вся избыточная энергия от батарей с большим зарядом рассеивается в виде тепла - это главный недостаток пассивного метода, т.к. он сокращает время работы батарей без подзарядки. В активном методе балансировки для передачи энергии от батарей с большим зарядом к менее заряженным батареям используются индуктивности или емкости, потери энергии в которых незначительны. Поэтому активный метод существенно более эффективен, нежели пассивный. Конечно, за повышение эффективности приходится платить - использовать дополнительные относительно дорогостоящие компоненты.

    ПАССИВНЫЙ МЕТОД БАЛАНСИРОВКИ

    Наиболее простое решение - выравнивание напряжения батарей. Например, микросхема BQ77PL900, обеспечивающая защиту батарейных блоков с 5-10 последовательно включенными батареями, используется в инструментах без токопроводящего кабеля, скутерах, бесперебойных источниках питания и медицинском оборудовании. Микросхема представляет собой функционально законченный узел и может применяться для работы с батарейным отсеком, как показано на рисунке 1. Сравнивая напряжение батарей с запрограммированными порогами, микросхема при необходимости включает режим балансировки. На рисунке 2 показан принцип действия. Если напряжение какой-либо батареи превышает заданный порог, заряд прекращается, подключаются байпасные цепочки. Заряд не возобновляется до тех пор, пока напряжение батареи ни снизится ниже порогового и процедура балансировки прекратится.

    Рис. 1. Микросхема BQ77PL900, используемая в автономном
    режиме работы для защиты блока батарей

    При применении алгоритма балансировки, использующего в качестве критерия только отклонение напряжения, возможна неполная балансировка из-за разности внутреннего импеданса батарей (см. рис. 3). Дело в том, что внутренний импеданс вносит свой вклад в разброс напряжений при заряде. Микросхема защиты батарей не может определить, чем вызвана разбалансировка напряжений: разной емкостью батарей или различием их внутренних сопротивлений. Поэтому при таком типе пассивной балансировки нет гарантии, что все батареи окажутся на 100% заряженными. В микросхеме указателя заряда BQ2084 используется улучшенная версия балансировки, основанная на изменении напряжения. Чтобы минимизировать эффект разброса внутренних сопротивлений BQ2084 осуществляет балансировку ближе к окончанию процесса заряда, когда величина зарядного тока невелика. Другое преимущество BQ2084 - измерение и анализ напряжения всех батарей, входящих в блок. Однако в любом случае этот метод применим лишь в режиме зарядки.


    Рис. 2. Пассивный метод, основанный на балансировке по напряжению

    Рис. 3. Пассивный метод балансировки по напряжению
    неэффективно использует емкость батарей

    Микросхемы семейства BQ20ZXX, используют для определения уровня заряда фирменную технологию Impedance Track, базирующуюся на определении СЗБ и емкости батареи. В этой технологии для каждой батареи вычисляется заряд Q NEED , необходимый для достижения полностью заряженного состояния, после чего находится разница ΔQ между Q NEED всех батарей. Затем микросхема включает силовые ключи, через которые происходит балансировка батареи до состояния ΔQ = 0. Вследствие того, что разность внутренних сопротивлений батарей не оказывает влияния на этот метод, он может применяться в любое время: и при зарядке, и при разрядке батарей. При использовании технологии Impedance Track достигается более точная балансировка батарей (см. рис. 4).

    Рис. 4.

    АКТИВНАЯ БАЛАНСИРОВКА

    По энергоэффективности этот метод превосходит пассивную балансировку, т.к. для передачи энергии от более заряженной батареи к менее заряженной вместо резисторов используются индуктивности и емкости, потери энергии в которых практически отсутствуют. Этот метод предпочтителен в случаях, когда требуется обеспечить максимальное время работы без подзарядки.
    Микросхема BQ78PL114, произведенная по фирменной технологии PowerPump, представляет собой новейший компонент компании TI для активной балансировки батарей и использует индуктивный преобразователь для передачи энергии. PowerPump использует n-канальный p-канальный MOSFET и дроссель, который расположен между парой батарей. Схема показана на рисунке 5. MOSFET и дроссель составляют промежуточный понижающий/повышающий преобразователь. Если BQ78PL114 определяет, что верхней батарее нужно передать энергию в нижнюю, на выводе PS3 формируется сигнал частотой около 200 кГц с коэффициентом заполнения около 30%. Когда ключ Q1 открыт, энергия из верхней батареи запасается в дросселе. Когда ключ Q1 закрывается, энергия, запасенная в дросселе, через обратный диод ключа Q2 поступает в нижнюю батарею.

    Рис. 5.

    Потери энергии при этом невелики и в основном происходят в диоде и дросселе. Микросхема BQ78PL114 реализует три алгоритма балансировки:

    • по напряжению на выводах батареи. Этот метод похож на пассивный метод балансировки, описанный выше;
    • по напряжению холостого хода. В этом методе компенсируется различие во внутренних сопротивлениях батарей;
    • по СЗБ (основан на прогнозировании состояния батареи). Метод схож с тем, который использован в семействе микросхем BQ20ZXX при пассивной балансировке по СЗБ и емкости батареи. В этом случае точно определяется заряд, который необходимо передать от одной батареи к другой. Балансировка происходит в конце заряда. При использовании этого метода достигается наилучший результат (см. рис. 6)

    Рис. 6.

    Из-за больших токов балансировки технология PowerPump гораздо более эффективна, чем обычная пассивная балансировка с внутренними байпасными ключами. В случае балансировки батарейного блока ноутбука токи балансировки составляют 25…50 мА. Подбирая значение компонентов можно достичь эффективности балансировки в 12-20 раз лучшей, чем при пассивном методе с внутренними ключами. Типичного значения разбалансировки (менее чем 5%) можно достичь за один или два цикла.
    Кроме того, технология PowerPump имеет и другие очевидные преимущества: балансировка может происходить при любом режиме работы - заряд, разряд и даже тогда, когда батарея, отдающая энергию, имеет меньшее напряжение, чем батарея, получающая энергию. По сравнению с пассивным методом теряется гораздо меньше энергии.

    ОБСУЖДЕНИЕ ЭФФЕКТИВНОСТИ АКТИВНОГО И ПАССИВНОГО МЕТОДА БАЛАНСИРОВКИ

    Технология PowerPump быстрее производит балансировку. При разбалансировке 2% батарей емкостью 2200 мА·ч она может быть произведена за один или два цикла. При пассивной балансировке встроенные в батарейный блок силовые ключи ограничивают максимальное значение тока, поэтому может потребоваться много больше циклов балансировки. Процесс балансировки может быть даже прерван при большой разнице параметров батарей.
    Увеличить скорость пассивной балансировки можно за счет использования внешних компонентов. На рисунке 7 приведен типичный пример такого решения, которое можно использовать совместно с микросхемами BQ77PL900, BQ2084 или семейства BQ20ZXX. Вначале включается внутренний ключ батареи, который создает небольшой ток смещения, протекающий через резисторы R Ext1 и R Ext2 , включенные между выводами батареи и микросхемой. Напряжение «затвор-исток» на резисторе RExt2 включает внешний ключ, и ток балансировки начинает протекать через открытый внешний ключ и резистор R Bal .

    Рис. 7. Принципиальная схема пассивной балансировки
    с использованием внешних компонентов

    Недостаток этого метода заключается в том, что одновременно не может происходить балансировка смежной батареи (см. рис. 8а). Это происходит из-за того, что когда открыт внутренний ключ смежной батареи, через резистор R Ext2 не может протекать ток. Поэтому ключ Q1 остается закрытым даже тогда, когда открыт внутренний ключ. На практике эта проблема не имеет большого значения, т.к. при таком способе балансировки батарея, подключенная к Q2 быстро балансируется, а следом за ней балансируется и батарея, подключенная к ключу Q2.
    Другая проблема заключается в возникновении высокого напряжения сток-исток V DS , которое может возникнуть когда балансируется каждая вторая батарея. На рисунке 8б показан случай, когда балансируются верхняя и нижняя батареи. При этом напряжение V DS среднего ключа может превысить максимально допустимое. Решение этой проблемы - ограничение максимального значения резистора R Ext или исключение возможности одновременной балансировки каждой второй батареи.

    Метод быстрой балансировки - новый путь улучшения безопасности эксплуатации батарей. При пассивной балансировке цель заключается в том, чтобы сбалансировать емкость батарей, но из-за малых токов балансировки это возможно лишь в конце цикла заряда. Другими словами, перезаряд плохой батареи может быть предотвращен, но это не увеличит время непрерывной работы без подзаряда, т.к. слишком много энергии будет потеряно в байпасных резистивных цепочках.
    При использовании технологии активной балансировки PowerPump одновременно достигаются две цели - балансировка емкости в конце цикла заряда и минимальное различие напряжений в конце цикла разряда. Энергия запасается и отдается слабой батарее, а не рассеивается в виде тепла в байпасных цепях.

    ЗАКЛЮЧЕНИЕ

    Корректная балансировка напряжения батарей - один из путей увеличения безопасности эксплуатации батарей и увеличения срока их службы. Новые технологии балансировки отслеживают состояние каждой батареи, что позволяет увеличить срок их службы и повысить безопасность эксплуатации. Технология быстрой активной балансировки PowerPump увеличивает время работы без подзарядки, а также позволяет максимально и с высокой эффективностью сбалансировать батареи в конце цикла разряда.



    Особенности:

    -Балансир

    -

    -Контроль по току

    -


    Описание выводов :

    Режим 4S: Режим 3S:
    " B- " - общий минус батареи
    " B1 " - +3,7В
    " B2 " - +7,4В
    " B3 " - +11,1В
    " B+ " - общий плюс батареи

    " B- " - общий минус батареи
    " B1 " - закоротить на "B-"
    " B2 " - +3,7В
    " B3 " - +7,4В
    " B+ " - общий плюс батареи
    " P- " - минус нагрузки (зарядного устройства)
    " P+ " - плюс нагрузки (зарядного устройства)

    ">



    Особенности:

    -Балансир : Плата контроля HCX-D119 для 3S/4S Li-Ion батареи имеет встроенную функцию балансира. При этом, в процессе заряда батареи, напряжение на кажой из ячеек выравнивается до значения 4,2В.
    Для того, чтобы воспользоваться функцией выравнивания напряжения вам необходимо выдержать батарею под напряжением 12,6/16,8В не менее 60 - 120 мин после окончания активной фазы зарядки батареи. Для работы балансира важно, чтобы напряжение было не выше 12,6 / 16,8В: при превышении этих напряжений контроллер встанет в состоянии защиты и балансировка аккумуляторов производиться не будет

    -Контроль напряжения на каждой из ячеек : При выходе напряжения на какой-либо из ячеек за пороговые значения вся батарея автоматически отключается.

    -Контроль по току : При превышении током нагрузки пороговых значений вся батарея автоматически отключается.

    - Возможность работы c батареями 3S (3 последовательных аккумулятора) Контроллер HCX-D119 имеет 100% совместимость с Li-Ion батареями 3S (11,1В). Для переключения контроллера в режим 3S необходимо перемкнуть контакты R8, а резистор R7 переместить на R11 (R7, при этом, остается разорванным) и площадку "B1" замкнуть на площадку "B-"


    Описание выводов :

    Режим 4S: Режим 3S:
    " B- " - общий минус батареи
    " B1 " - +3,7В
    " B2 " - +7,4В
    " B3 " - +11,1В
    " B+ " - общий плюс батареи
    " P- " - минус нагрузки (зарядного устройства)
    " P+ " - плюс нагрузки (зарядного устройства)
    " B- " - общий минус батареи
    " B1 " - закоротить на "B-"
    " B2 " - +3,7В
    " B3 " - +7,4В
    " B+ " - общий плюс батареи
    " P- " - минус нагрузки (зарядного устройства)
    " P+ " - плюс нагрузки (зарядного устройства)

    Зачем вообще нужны балансиры для 12-ти вольтовые АКБ? Когда у вас система на 12 вольт, то все АКБ сколько бы их небыло в параллельном соединении, и у них всегда одинаковое напряжение. Но когда мы переходим на 24 или 48 вольт, то появляется проблема с разным напряжением на последовательно соединённых аккумуляторах. Из-за этого при заряде некоторые акб уходят в перезаряд и начинают "закипать", а другие недозаряжаются, и в итоге вся цепочка АКБ быстро теряет ёмкость и в общем приходит в негодность.

    И даже полностью одинаковые АКБ со временем всё равно разбегаются по напряжению, по-этому не спасёт от проблемы даже купленные АКБ из одной партии. Для решения этой проблемы давно применяются различные балансировочные устройства, это или отдельные балансиры на каждый АКБ, или блоки на 24 и 48 вольт. Балансиры позволяют значительно продлить срок службы АКБ.

    Я сам в скором будущем буду переходить на 24 вольта, так-как токи в системе стали уже большими и мне тоже понадобятся балансиры. В поисках я нашёл несколько вариантов различных по возможностям, цене и принципу работы, и ниже я сделаю обзор на эти балансировочные устройства.

    VICTRON BATTERY BALANCER аккумуляторный балансир

    Первым мне попались вот такие балансиры (фото ниже). Это судя по описанию активные балансиры с током балансировки 0.7А. Активные это значит что энергия с более заряженного АКБ переливается в менее заряженный, а не просто сжигается на сопротивлении. Но до конца я в этом не уверен так как описания на разных сайтах разнятся. Этот балансир для двух АКБ, то-есть на 24 вольта, с добавлением АКБ количество балансиров нужно увеличивать. На 48 вольт нужно уже три таких балансира.

    Этот балансир не имеет возможности настройки под различные типы свинцовых аккумуляторов. Есть индикация работы, и реле тревоги, оно замыкается если на акб различие по напряжению превышает 0.2 вольта. Цена на этот балансир просто убила, на момент написания статьи цена на сайте была 6220 рублей . На 48 вольт их надо три штуки и в общем нужно отдать 18660 рублей плюс доставка.

    Схема подключения этих балансиров к АКБ. Светодиодные индикаторы и реле сигнализации:

    Зеленый: включен, когда напряжение АКБ более 27,3 В
    Оранжевый: включен при отклонении более 0,1 В
    Красный: тревога (отклонение более 0, 2 В)
    Реле сигнализации: нормально открытый контакт замыкается, когда включается красный светодиод. Контакт остается замкнутым до уменьшения отклонения до 0,14 В, или до снижения напряжения АКБ до 26,6 В. Сброс реле сигнализации осуществляется при помощи кнопки, подключенной к двум терминалам.

    >

    Из минусов слишком высокая цена, слабый ток балансировки всего 0,7А, и нет возможности настройки под свой тип АКБ. Есть более лучшие аналоги по приемлемой цене.

    Устройство выравнивания заряда ЭЛНИ 2/12 на 2АКБ 12В

    Нашёл так-же ещё вот такой балансир. Это уже явно активный балансир, явно превосходящий первый по току балансировки, у этого ток 5А в сравнении 0.7А у первого. Цена правда тоже не маленькая - 3600-3900 руб на разных сайтах.

    Этот балансир постоянно отслеживает напряжение соединённых последовательно акб, и выравнивает напряжение переливая энергию между АКБ. И это он делает не только во время заряда, когда АКБ уже почти зарядились, а постоянно если есть дисбаланс. И ток балансировки здесь может достигать 5А, это значит что балансир может справляться даже с большим дисбалансом по ёмкости.

    >

    На этом на наших сайтах я не нашёл ничего оригинального, что бы не имелось на алиэкспресс. Есть конечно много балансиров, но все они куплены в китае и продаются у нас втридорого. Так зачем переплачивать если можно самим купить на алиэкспресс то что предлагают наши перекупщики.

    Активный балансир для 12в АКБ

    На алиэкспресс я нашёл вот такой балансир. Это активный балансир с максимальным током балансировки 10А. Он отслеживает напряжение на последовательно соединённых АКБ и выравнивает напряжение переливая энергию между АКБ с точностью 10mV. Каждый балансир ставится на свой аккумулятор, и балансиры соединяются между собой. Посмотреть описание и купить можно здесь Балансир 12V . Цена на момент написания статьи 1700 рублей, и это не дорого за такой мощный активный балансир.

    >

    Производитель этих балансиров выпускает несколько различных типов балансиров. В продаже есть балансиры на 2 вольта для отдельных свинцово-кислотных "банок". Также балансиры для литий-ионных АКБ на 3,6 и 4,2 вольта. И балансиры для аккумуляторов на 6 и 12 вольт. Все балвнсиры можно посмотреть здесь - Каталог балансиров 2/3.6/3.8/4.2/6/12 вольт

    Балансир аккумуляторый на 24 вольта (12*2)

    Так-же нашёл я ещё один популярный по заказам и дешовый балансир для аккмуляторов. Это балансир для двух АКБ по 12 вольт, можно ставить несколько если система на 48 вольт и выше. Ток балансировки до 5А что довольно неплохо. Единственное я так и не понял активный он или пассивный, но судя по размерам и отсутствию радиатора это активный балансир. Цена этого балансира 1760 рублей, посмотреть можно здесь - Двойной Балансир для 12в АКБ

    >

    Цена очень привлекательная, и ток балансировки очень приличный 5А, по-этому справится даже с болшой разницей по ёмкости и напряжению между АКБ в системе.

    Балансир для (12×4) 48 вольт АКБ

    Вот ещё один отличный активный балансир для аккумуляторов, он сделан в виде блока на 48 вольт, то-есть для четырёх последовательно соединённых АКБ. Ток балансировки до 10 ампер, и это просто отлично, позволит ликвидировать даже большой дисбаланс. Посмотреть полное описание и купить его моно по этой сылке на алиэкспресс - Балансир для 48в АКБ (12×4) , цена 3960 рублей.

    >

    Пока это всё что мне удалось найти, хотя конечно не всё, но это основное. Есть контроллеры для солнечных батарей со встроенными балансирами, но это очень дорого пока. Есть зарядные устройства с балансировкой, но здесь они неуместны. Есть всякие электронные схемы, которые можно заставить работать как балансиры, есть варианты самостоятельного изготовления балансиров.