Войти
Автожурнал "Форсаж"
  • Каковы причины появления викингов на территории европы
  • Бессмертие человека – это не фантастика!
  • Биография полководца - тамерланда
  • Как молиться, чтобы Бог не только услышал, но и помог
  • Магические заговоры натальи степановой на любовь мужчины
  • Заговоры Натальи Степановой: магия сибирской целительницы
  • С помощью ультразвука так как. Ультразвук, его свойства и применение. Генерация ультразвуковых волн

    С помощью ультразвука так как. Ультразвук, его свойства и применение. Генерация ультразвуковых волн

    Содержание статьи

    УЛЬТРАЗВУК, упругие волны высокой частоты, которым посвящены специальные разделы науки и техники. Человеческое ухо воспринимает распространяющиеся в среде упругие волны частотой приблизительно до 16 000 колебаний в секунду (Гц); колебания с более высокой частотой представляют собой ультразвук (за пределом слышимости). Обычно ультразвуковым диапазоном считают полосу частот от 20 000 до нескольких миллиардов герц. Хотя о существовании ультразвука ученым было известно давно, практическое использование его в науке, технике и промышленности началось сравнительно недавно. Сейчас ультразвук широко применяется в различных физических и технологических методах. По скорости распространения звука в среде судят о ее физических характеристиках. Измерения скорости на ультразвуковых частотах производятся с очень большой точностью; вследствие этого с весьма малыми погрешностями определяются, например, адиабатические характеристики быстропротекающих процессов, значения удельной теплоемкости газов, упругие постоянные твердых тел.

    Гидролокация.

    В конце Первой мировой войны появилась одна из первых практических ультразвуковых систем, предназначенная для обнаружения подводных лодок. Пучок ультразвукового излучения может быть сделан остро направленным, и по отраженному от цели сигналу (эхо-сигналу) можно определить направление на эту цель. Измеряя время прохождения сигнала до цели и обратно, определяют расстояние до нее. К настоящему времени система, именуемая гидролокатором, или сонаром, стала неотъемлемым средством мореплавания.

    Если направить импульсное ультразвуковое излучение в сторону дна и измерить время между посылом импульса и его возвратом, можно определить расстояние между излучателем и приемником, т.е. глубину. Основанные на этом сложные системы автоматической регистрации применяются для составления карт дна морей и океанов, а также русел рек. Соответствующие навигационные системы атомных подводных лодок позволяют им совершать безопасные переходы даже под полярными льдами.

    Дефектоскопия.

    Зондирование ультразвуковыми импульсами применяется и для исследований свойств различных материалов и изделий из них. Проникая в твердые тела, такие импульсы отражаются от их границ, а также от различных инородных образований в толще исследуемой среды, таких, как полости, трещины и др., указывая на их расположение. Ультразвук «проверяет» материал, не вызывая в нем разрушений. Такими неразрушающими методами контроля проверяют качество массивных стальных поковок, алюминиевых блоков, железнодорожных рельсов, сварных швов машин.

    Ультразвуковой расходомер.

    Принцип действия такого прибора основан на эффекте Доплера. Импульсы ультразвука направляются попеременно по потоку и против него. При этом скорость прохождения сигнала то складывается из скорости распространения ультразвука в среде и скорости потока, то эти величины вычитаются. Возникающая разность фаз импульсов в двух ветвях измерительной схемы регистрируется электронным оборудованием, и в итоге измеряется скорость потока, а по ней и массовая скорость (расход). Этот измеритель не вносит изменений в поток жидкости и может применяться как к потоку в замкнутом контуре, например, для исследований кровотока в аорте или системы охлаждения атомного реактора, так и к открытому потоку, например реки.

    Химическая технология.

    Вышеописанные методы относятся к категории маломощных, в которых физические характеристики среды не изменяются. Но существуют и методы, в которых на среду направляют ультразвук большой интенсивности. При этом в жидкости развивается мощный кавитационный процесс (образование множества пузырьков, или каверн, которые при повышении давления схлопываются), вызывая существенные изменения физических и химических свойств среды (см . КАВИТАЦИЯ) . Многочисленные методы ультразвукового воздействия на химически активные вещества объединяются в научно-техническую отрасль знаний, называемую ультразвуковой химией. В ней исследуются и стимулируются такие процессы, как гидролиз, окисление, перестройка молекул, полимеризация, деполимеризация, ускорение реакций.

    Ультразвуковая пайка.

    Кавитация, обусловленная мощными ультразвуковыми волнами в металлических расплавах и разрушающая окисную пленку алюминия, позволяет проводить его пайку оловянным припоем без флюса. Изделия из спаянных ультразвуком металлов стали обычными промышленными товарами.

    Ультразвуковая механическая обработка.

    Энергия ультразвука успешно используется при машинной обработке деталей. Наконечник из малоуглеродистой стали, выполненный в соответствии с формой поперечного сечения желаемого отверстия (или полости), крепится твердым припоем к концу усеченного металлического конуса, на который воздействует ультразвуковой генератор (при этом амплитуда вибраций составляет до 0,025 мм). В зазор между стальным наконечником и обрабатываемой деталью подается жидкая суспензия абразива (карбида бора). Поскольку в таком методе режущим элементом выступает абразив, а не стальной резец, он позволяет обрабатывать очень твердые и хрупкие материалы – стекло, керамику, алнико (Fe–Ni–Co–Al-сплав), карбид вольфрама, закаленную сталь; кроме того, ультразвуком можно обрабатывать отверстия и полости сложной формы, так как относительное движение детали и режущего инструмента может быть не только вращательным.

    Ультразвуковая очистка.

    Важной технологической проблемой является очистка поверхности металла или стекла от мельчайших посторонних частиц, жировых пленок и других видов загрязнения. Там, где слишком трудоемка ручная очистка или необходима особая степень чистоты поверхности, применяется ультразвук. В кавитирующую омывающую жидкость вводится мощное ультразвуковое излучение (создающее переменные ускорения с частотой до 10 6 Гц), и схлопывающиеся кавитационные пузырьки срывают с обрабатываемой поверхности нежелательные частицы. В промышленности используется много различного ультразвукового оборудования для очистки поверхностей кварцевых кристаллов и оптического стекла, малых прецизионных шарикоподшипников, снятия заусенец с малогабаритных деталей; применяется оно и на конвейерных линиях.

    Применение в биологии и медицине.

    То, что ультразвук активно воздействует на биологические объекты (например, убивает бактерии), известно уже более 70 лет. Ультразвуковые стерилизаторы хирургических инструментов применяются в больницах и клиниках. Электронная аппаратура со сканирующим ультразвуковым лучом служит целям обнаружения опухолей в мозгу и постановки диагноза, используется в нейрохирургии для инактивации отдельных участков головного мозга мощным сфокусированным высокочастотным (порядка 1000 кГц) пучком. Но наиболее широко ультразвук применяется в терапии – при лечении люмбаго, миалгии и контузий, хотя до сих пор среди медиков нет единого мнения о конкретном механизме воздействия ультразвука на больные органы. Высокочастотные колебания вызывают внутренний разогрев тканей, сопровождаемый, возможно, микромассажем.

    Генерация ультразвуковых волн.

    Ультразвук можно получить от механических, электромагнитных и тепловых источников. Механическими излучателями обычно служат разного рода сирены прерывистого действия. В воздух они испускают колебания мощностью до нескольких киловатт на частотах до 40 кГц. Ультразвуковые волны в жидкостях и твердых телах обычно возбуждают электроакустическими, магнитострикционными и пьезоэлектрическими преобразователями.

    Магнитострикционные преобразователи.

    Эти устройства преобразуют энергию магнитного поля в механическую (звуковую или ультразвуковую) энергию. Их действие основано на магнитоупругом эффекте, т.е. на том, что некоторые металлы (железо, никель, кобальт) и их сплавы деформируются в магнитном поле. Ярко выраженными магнитоупругими свойствами обладают и ферриты (материалы, спекаемые из смеси окиси железа с окислами никеля, меди, кобальта и других металлов). Если магнитоупругий стержень расположить вдоль переменного магнитного поля, то этот стержень станет попеременно сокращаться и удлиняться, т.е. испытывать механические колебания с частотой переменного магнитного поля и амплитудой, пропорциональной его индукции. Вибрации преобразователя возбуждают в твердой или жидкой среде, с которой он соприкасается, волны ультразвука той же частоты. Обычно такие преобразователи работают на собственной частоте механических колебаний, так как на ней наиболее эффективно преобразование энергии из одной формы в другую. Магнитострикционные преобразователи из тонкого листового металла работают лучше всего в низкочастотном ультразвуковом диапазоне (от 20 до 50 кГц), на частотах выше 100 кГц у них очень низкий КПД.

    Пьезоэлектрические преобразователи

    преобразуют электрическую энергию в энергию ультразвука. Действие их основано на обратном пьезоэлектрическом эффекте, проявляющемся в деформациях некоторых кристаллов под действием приложенного к ним электрического поля. Этот эффект хорошо проявляется у природного или искусственно выращенного монокристалла кварца или сегнетовой соли, а также у некоторых керамических материалов (например, у титаната бария). Переменное электрическое поле частоты желаемого ультразвука подается через напыленные металлические электроды, располагающиеся на противоположных гранях образца, вырезанного определенным образом из пьезоэлектрика. При этом возникают механические колебания, которые и распространяются в виде ультразвука в сопредельной жидкой или твердотельной среде. Пьезоэлектрические преобразователи в виде тонких кристаллических пластинок могут излучать мощные ультразвуковые волны частотой до 1 МГц (в лабораторных условиях получены частоты до 1000 МГц). Длина ультразвуковой волны (обратно пропорциональная частоте) очень мала, поэтому из таких волн, как и из световых, можно формировать узконаправленные пучки. Достоинство керамических пьезоэлектриков состоит в том, что из них можно отливать, прессовать или получать выдавливанием преобразователи разных размеров и форм. Такой преобразователь, выполненный в виде чаши сферического контура, способен сфокусировать ультразвуковое излучение в малое пятно очень большой интенсивности. Ультразвуковые линзы фокусируют звуковые волны так же, как лупы фокусируют свет.

    Обнаружение и измерения на ультразвуке.

    Энергия акустического поля определяется в основном звуковым давлением и скоростью частиц среды, в которой звук распространяется. Обычно звуковое давление в газах (воздухе) и жидкостях (воде) имеет порядок 10 -3 –10 -6 давления окружающей среды (равного 1 атм на уровне моря). Давление ультразвуковой волны превосходит это значение в тысячи раз и легко обнаруживается с помощью микрофонов в воздухе и гидрофонов в воде. Разработаны специальные средства измерений для приема и получения количественных характеристик ультразвукового излучения, особенно на высоких частотах. Поскольку волны сжатия и разрежения в газах и жидкостях меняют показатель преломления среды, для визуализации этих процессов созданы оптические методы. При отражении ультразвука в замкнутой системе образуется стоячая волна, воздействующая на излучатель. В устройствах такого типа, называемых ультразвуковыми интерферометрами, длина волны в среде измеряется с очень большой точностью, что позволяет получать данные о физических характеристиках среды. С помощью интенсивного ультразвукового пучка можно оценить и измерить давление ультразвукового излучения, аналогично тому, как это делается при измерении светового давления. Это давление связано с плотностью энергии ультразвукового поля и позволяет простейшим способом определить интенсивность распространяющейся ультразвуковой волны.

    Ультразвук - это упругие колебания и волны с частотой выше 20 кГц, не слышимые человеческим ухом. В настоящее время удается получать ультразвуковые колебания с частотой до 10 ГГц. Соответственно указанным частотным диапазонам область длины ультразвуковых волн в воздухе составляет от 1,6 до 0,3?10 - 4 см , в жидкостях - от 6,0 до 1,2?10 - 4 см и в твердых телах - от 20,0 до 4,0?10 - 4 см .

    Ультразвуковые волны по своей природе не отличаются от упругих волн слышимого диапазона. Распространение ультразвука подчиняется основным законам, общим для акустических волн любого диапазона частот. К основным законам распространения ультразвука относятся законы отражения и преломления на границах различных сред, дифракции и рассеяния ультразвука при наличии препятствий и неоднородностей на границах, законы волноводного распространения в ограниченных участках среды.

    Вместе с тем высокая частота ультразвуковых колебаний и малая длина волн обусловливают ряд специфических свойств, присущих только ультразвуку.

    Так, возможно визуальное наблюдение ультразвуковых волн с помощью оптических методов. Благодаря малой длине ультразвуковые волны хорошо фокусируются, и, следовательно, возможно полу- чение направленного излучения. Еще одна весьма важная особенность ультразвука заключается в возможности получения высоких значений интенсивности при относительно небольших амплитудах колебаний.

    Уменьшение амплитуды и интенсивности ультразвуковой волны по мере ее распространения в заданном направлении, т.е. затухание, определяется рассеянием и поглощением ультразвука, переходом ультразвуковой энергии в другие формы, например, в тепловую.

    Источники ультразвука на рабочих местах. К техногенным источникам ультразвука относятся все виды ультразвукового технологического оборудования, ультразвуковые приборы и аппаратура промышленного, медицинского и бытового назначений, которые

    генерируют ультразвуковые колебания в диапазоне частот от 20 кГц до 100 МГц и выше. Источником ультразвука может также быть оборудование, при эксплуатации которого ультразвуковые колебания возникают как сопутствующий фактор.

    Основными элементами ультразвуковой техники являются ультразвуковые преобразователи и генераторы. Ультразвуковые пре- образователи в зависимости от вида потребляемой энергии подразделяют на механические (ультразвуковые свистки, сирены) и электромеханические (магнитострикционные, пьезоэлектрические, электродинамические). Механические и магнитострикционные преобразователи используются для генерации низкочастотного ультразвука, а пьезоэлектрические преобразователи позволяют получать ультразвуки высокой частоты - до 10 9 Гц.

    Ультразвуковые генераторы предназначены для преобразования тока промышленной частоты в ток высокой частоты и для питания электроакустических систем - преобразователей как пьезоэлектрических, так и магнитострикционных.

    В настоящее время ультразвук широко применяется в машиностроении, металлургии, химии, радиоэлектронике, строительстве, геологии, легкой и пищевой промышленности, рыбном промысле, медицине и т.д.

    Среди многообразия способов применения ультразвука с позиций оценки их возможного неблагоприятного влияния на организм работающих целесообразно выделить два основных направления:

    1. Применение низкочастотных (до 100 кГц) ультразвуковых колебаний, распространяющихся контактным и воздушным путями, для активного воздействия на вещества и технологические процессы - очистка, обеззараживание, сварка, пайка, механическая и термическая обработка материалов (сверхтвердых сплавов, алмазов, керамики и др.), коагуляция аэрозолей; в медицине - ультразвуковой хирургический инструментарий, установки для стерилизации рук медперсонала, различных предметов и др.

    2. Применение высокочастотных (100 кГц - 100 МГц и выше) ультразвуковых колебаний, распространяющихся исключительно контактным путем, для неразрушающего контроля и измерений; в медицине - диагностика и лечение различных заболеваний.

    Анализ распространенности и перспектива применения разнообразных ультразвуковых источников показал, что 60-70% всех работающих в условиях неблагоприятного воздействия ультразву-

    ка составляют дефектоскописты, операторы очистных, сварочных, ограночных агрегатов, врачи ультразвуковых исследований (УЗИ), физиотерапевты, хирурги и др.

    В целях унификации критериев и методов оценки степени производственных воздействий ультразвука разработана «Гигиеническая классификация ультразвука, воздействующего на человека-оператора». Классифицируемыми признаками воздействующего на работающих ультразвука являются: способ распространения фактора, тип источника ультразвука, способ и режим генерирования колебаний, частотная характеристика ультразвуковых колебаний (табл. 12.1).

    Работающие с технологическими и медицинскими ультразвуковыми источниками подвергаются воздействию комплекса неблаго- приятных факторов производственной среды, ведущим из которых является ультразвук с частотой колебаний 20 Гц - 20,0 МГц и интенсивностью 50-160 дБ.

    Так, стационарные очистные, сварочные, ограночные установки генерируют постоянные ультразвуковые колебания с частотами

    Таблица 12.1. Гигиеническая классификация ультразвука, воздействующего на оператора

    Классифицируемый признак

    Характеристика классифицируемого признака

    1. Способ распространения ультразвуковых колебаний

    Контактный (при контакте рук или других частей тела человека с источником ультразвука)

    Воздушный (акустический)

    2. Тип источника ультразвуковых колебаний

    Ручной источник Стационарный источник

    3. Частотная характеристика ультразвуковых колебаний

    Низкочастотный ультразвук 16-63 кГц (указаны среднегеометрические частоты октавных полос)

    Среднечастотный ультразвук 125-250 кГц Высокочастотный ультразвук 1,0-31,5 МГц

    4. Режим генерирования ультразвуковых колебаний

    Постоянный Импульсный

    5. Способ излучения ультразвуковых колебаний

    Магнитострикционный Пьезоэлектрический

    24,0-22,0 кГц, распространяющиеся контактным и воздушным путями (25-30% рабочей смены).

    Интенсивность ультразвука в зоне контакта с руками операторов очистных, ограночных и сварочных агрегатов составляет 0,03- 1,4 Вт/см 2 , т.е. уровни колеблются от значений практически норма- тивных до 14-кратного превышения ИДУ. Уровни звукового давления в слышимом и ультразвуковом диапазонах частот на рабочих местах достигают 80-101 дБ с максимумом на рабочих частотах установок, что соответствует норме.

    Среди многочисленных методов ультразвуковой дефектоскопии наиболее распространен импульсный метод (частоты 0,5-20,0 МГц при частоте следования импульсов в пределах 300-4000 Гц; частоты 50 и 80 кГц с частотой следования импульсов в пределах 100- 4000 Гц).

    При ультразвуковом контроле сварных и железобетонных изделий оператор подвергается воздействию ультразвука в течение 72- 75% рабочего времени, интенсивность ультразвука в местах контакта колеблется от 1?10 -3 до 1,0 Вт/см 2 , уровни воздушного ультразвука не превышают ПДУ.

    Среднесменное время воздействия контактного ультразвука на работающих зависит от типа ультразвукового источника (ручной или стационарный), для которого оно, как правило, в 2,5-3 раза меньше.

    Используемые в лечебно-профилактических учреждениях диагностические установки работают в диапазоне частот 0,8-20,0 МГц, частота следования импульсов - 50-100 Гц. Диагностическое сканирование выполняется ручным ультразвуковым датчиком. Продолжительность одного исследования колеблется от 15-20 мин до 1-1,5 ч. Уровни высокочастотного контактного ультразвука, воздействующего на руки врача, составляют от 0,5-25,0-40,0 мВт/см 2 до 1,0 Вт/см 2 при диагностических исследованиях, занимающих 70% рабочего времени.

    В ультразвуковой хирургической аппаратуре частота колебаний составляет 26,6-44,0-66,0-88,0 кГц. При работе хирургов отме- чена контактная передача ультразвука на руки, длительность ультразвукового воздействия не превышает 14% рабочего времени. Интенсивность контактного ультразвука находится в пределах 0,07- 1,5 Вт/см 2 , уровни воздушного ультразвука на рабочих местах хирургов ниже допустимых - 80-89 дБ.

    Ультразвуковая физиотерапевтическая аппаратура генерирует колебания с частотами 0,88 и 2,64 МГц. Уровни воздействующего на руки медперсонала постоянного и импульсного контактного уль- тразвука, распространяющегося через боковую поверхность ручного излучателя, составляют 0,02-1,5 Вт/см. Длительность одной процедуры не превышает 15 мин, время контакта с ультразвуком равно 33% за смену.

    Биологическое действие ультразвука. Ультразвуковые волны способны вызывать разнонаправленные биологические эффекты, характер которых определяется многими факторами: интенсивностью ультразвуковых колебаний, частотой, временными параметрами колебаний (постоянный, импульсный), длительностью воздействия, чувствительностью тканей.

    В частности, частота ультразвуковых колебаний определяет глубину проникновения фактора: чем выше частота, тем большая часть энергии поглощается тканями, но при этом ультразвуковые колебания проникают на меньшую глубину. Следует отметить, что поглощение ультразвука в биологических тканях не подчиняется общим закономерностям. Согласно имеющимся данным, в биологических тканях существует не квадратичная, а линейная зависимость поглощения от частоты. Это объясняется большой неоднородностью тканей организма. Неоднородностью биологических тканей обусловлена и разная степень поглощения ультразвука. Наименьшее поглощение наблюдается в жировом слое и почти вдвое большее в мышечной ткани. Серое вещество мозга в 2 раза больше поглощает ультразвук, чем белое; мало абсорбирует ультразвуковую энергию спинно-мозговая жидкость. Наибольшее поглощение наблюдается в костной ткани (табл. 12.2).

    При систематическом воздействии интенсивного низкочастотного ультразвука с уровнями, превышающими предельно допустимые, у работающих могут наблюдаться функциональные изменения центральной и периферической нервной систем, сердечно-сосудистой, эндокринной систем, слухового и вестибулярного анализаторов, гуморальные нарушения.

    При экспозиции ультразвуковыми колебаниями 130 дБ на частоте 25 кГц выявлены изменения сердечного ритма, картины крови, эндокринной функции и электрогенеза мозга (уплощение ЭЭГ); отмечаются усталость, повышенная утомляемость, снижение трудоспособности.

    Таблица 12.2. Поглощение ультразвука тканями организма человека

    Ткань

    Глубина, соответствующая уменьшению интенсивности ультразвука в 2 раза, в см

    800 кГц

    2400 кГц

    Почка

    Печень

    Сердце

    Мышечная ткань

    Жировая ткань

    Жировая и мышечная ткани

    При действии ультразвука частотой 20 кГц с уровнями звукового давления 120, 110 и 100 дБ на слух отмечено отсутствие заметных сдвигов порогов слуховой чувствительности после часовой экспозиции.

    Наиболее характерным является наличие вегетососудистой дистонии и астенического синдрома. Лица, длительное время обслуживающие низкочастотное ультразвуковое оборудование, предъявляют жалобы на головную боль, головокружение, общую слабость, быструю утомляемость, расстройство сна, сонливость днем, раздражительность, ухудшение памяти, повышенную чувствительность к звукам, боязнь яркого света. Встречаются жалобы на снижение температуры конечностей, приступы бледности или покраснения лица, нередки жалобы диспепсического характера.

    Общецеребральные нарушения часто сочетаются с явлениями умеренного вегетативного полиневрита рук. Это обусловлено тем, что наряду с общим воздействием ультразвука на организм работающих через воздух низкочастотный ультразвук оказывает локальное действие при соприкосновении с обрабатываемыми деталями и средами, в которых возбуждены колебания, или с ручными источниками.

    При воздействии низкочастотного ультразвука вегетативно-сосудистые нарушения наступают (при одинаковом стаже работы), как правило, раньше, чем при экспозиции к высокочастотному ультразвуку, и характеризуются наличием трофических расстройств, распространяющихся на мышечную ткань с последующей гипертрофией мышц кисти.

    Систематический, даже кратковременный контакт с жидкими и твердыми средами, в которых возбуждены ультразвуковые колебания, заметно усиливает действие воздушного ультразвука.

    По сравнению с высокочастотным шумом, ультразвук слабее влияет на слуховую функцию, но вызывает более выраженные отклонения от нормы со стороны вестибулярной функции.

    Выявлено неблагоприятное влияние низкочастотного ультразвука на функциональное состояние центральной нервной системы. У рабочих в динамике рабочего дня замедляется скорость выполнения условно-рефлекторных реакций на внешние раздражения, наблюдается напряжение или нарушение терморегуляции и соответственно повышение температуры тела до 37,1-37,3 ?С, диссоциация в степени повышения температуры тела и кожи, отсутствие корреляции между показателями потоотделения, пульса и температуры тела. Отмечаются также: наклонность к снижению диастолического давления, вплоть до артериальной гипотонии, изменения на ЭКГ по экстракардиальному типу, повышение порогов слуховой чувствительности, если уровни звукового давления значительно превышают ПДУ, заметные сдвиги вестибулярной функции (по данным стабилографии).

    Эти изменения отчетливо проявляются у лиц, подвергающихся воздействию интенсивного ультразвука (122-130 дБ), и значитель- но менее выражены при воздействии ультразвука средней и малой интенсивностей (92-115 дБ).

    Применяемые в промышленности, биологии, медицине интенсивности контактного ультразвука принято подразделять на низкие (до 1,5 Вт/см 2), средние (1,5-3,0 Вт/см 2) и высокие (3,0-10,0 Вт/см 2).

    В зависимости от интенсивности контактного ультразвука различают три основных типа его действия:

    1) ультразвук низкой интенсивности способствует ускорению обменных процессов в организме, легкому нагреву тканей, микро- массажу и т.д. Низкие интенсивности не приводят к морфологическим изменениям внутри клеток, так как переменное звуковое давление вызывает только некоторое ускорение биофизических процессов, поэтому малые экспозиции ультразвука рассматриваются как физиологический катализатор;

    2) ультразвук средней интенсивности за счет увеличения переменного звукового давления вызывает обратимые реакции угнетения, в частности, нервной ткани. Скорость восстановления функций зависит от интенсивности и времени облучения ультразвуком;

    3) ультразвук высокой интенсивности вызывает необратимые угнетения, переходящие в процесс полного разрушения тканей.

    Имеющиеся данные свидетельствуют о том, что ультразвуковые колебания, генерируемые в импульсном режиме, оказывают несколько иное биологическое действие, чем постоянные колебания. Своеобразие физиологического действия импульсного ультразвука заключается в меньшей выраженности, но большей мягкости и длительности проявления эффектов. Мягкость действия импульсного контактного ультразвука связана с преобладанием физико-химических эффектов действия над тепловым и механическим.

    Воздействие ультразвука на биологические структуры обусловлено рядом факторов. Эффекты, вызываемые ультразвуком, условно подразделяют на:

    механические, вызываемые знакопеременным смещением среды, радиационным давлением и т.д. Так, при малых интенсивностях (до 2-3 Вт/см 2 на частотах порядка 10 5 -10 6 Гц) колебания частиц биологической среды производят своеобразный микромассаж тканевых элементов, способствующий лучшему обмену веществ;

    физико-химические, связанные с ускорением процессов диффузии через биологические мембраны, изменением скорости биологических реакций;

    термические, являющиеся следствием выделения тепла при поглощении тканями ультразвуковой энергии, повышения температуры на границах тканевых структур, нагрева на газовых пузырьках;

    Эффекты, связанные с возникновением в тканях ультразвуковой кавитации (образование с последующим захлопыванием парогазовых пузырьков в среде под действием ультразвука). Кавитация приводит к разрыву молекулярных связей. Например, молекулы воды распадаются на свободные радикалы ОН - и Н+, что является первопричиной окисляющего действия ультразвука. Подобным образом происходит расщепление под действием ультразвука высокомолекулярных соединений в биологических объектах, например, нуклеиновых кислот, белковых веществ.

    Сведения о биологическом действии низкочастотного ультразвука весьма ограничены. Имеющиеся данные свидетельствуют о том, что низкочастотный ультразвук - это фактор, обладающий большой

    биологической активностью и способный вызывать функциональные и органические нарушения со стороны нервной, сердечно-сосудистой, кроветворной, эндокринной и других систем организма.

    Данные о действии высокочастотного ультразвука на организм человека свидетельствуют о полиморфных и сложных изменениях, происходящих почти во всех тканях, органах и системах.

    Происходящие под воздействием ультразвука (воздушного и контактного) изменения подчиняются общей закономерности: малые интенсивности стимулируют и активируют, а средние и большие угнетают, тормозят и могут полностью подавлять функции.

    Высокочастотный контактный ультразвук вследствие малой длины волны практически не распространяется в воздухе и оказы- вает воздействие на работающих только при контакте источника ультразвука с поверхностью тела. Изменения, вызванные действием контактного ультразвука, обычно более выражены в зоне контакта, чаще это пальцы рук, кисти, хотя не исключается возможность дистальных проявлений за счет рефлекторных и нейрогуморальных связей.

    Длительная работа с ультразвуком при контактной передаче на руки вызывает поражение периферического нейрососудистого аппа- рата, причем степень выраженности изменений зависит от интенсивности ультразвука, времени озвучивания и площади контакта, т.е. ультразвуковой экспозиции, и может усиливаться при наличии сопутствующих факторов производственной среды, усугубляющих его действие (воздушный ультразвук, локальное и общее охлаждения, контактные смазки - различные виды масел, статическое напряжение мышц и т.д.).

    Среди работающих с источниками контактного ультразвука отмечен высокий процент жалоб на наличие парестезий, повышенную чувствительность рук к холоду, чувство слабости и боли в руках в ночное время, снижение тактильной чувствительности, потливость ладоней. Имеют место также жалобы на головные боли, головокружение, шум в ушах и голове, на общую слабость, сердцебиение, болевые ощущения в области сердца.

    Установлено, что высокочастотный ультразвук, воздействующий контактным путем на протяжении длительного времени, оказывает неблагоприятное воздействие, вызывая у операторов-дефектоскопистов развитие вегетативно-сосудистых поражений рук. У операторов ультразвуковой дефектоскопии выявлена повышенная час-

    тота гемодинамических нарушений глаза, преимущественно в виде гипотонического состояния, проявляющегося атонией вен, венул и венозных колен капилляров переднего отдела глазного яблока, снижением ретинального давления, гипотонической ангиопатией сетчатки. Выявленные сосудистые нарушения глаз у данной профессиональной группы следует трактовать как проявление общего вегетососудистого нарушения, связанного с воздействием ультразвуковых колебаний (0,5-5,0 МГц, интенсивность до 1,0 Вт/см 2).

    Отмечено неблагоприятное воздействие контактного ультразвука на медицинский персонал, обслуживающий физиотерапевтическую и диагностическую аппаратуру, которое также проявляется развитием вегетативно-сосудистых поражений рук.

    Вегетативно-сенсорная (ангионевроз) полинейропатия рук, развивающаяся при воздействии контактного ультразвука, впервые признана профессиональным заболеванием и внесена в список про- фзаболеваний в 1989 г. Установлено, что биологическое действие ультразвуковых колебаний при контактной передаче обусловлено его влиянием на нервно-рецепторный аппарат кожи с последующим включением рефлекторных, нейрогуморальных связей. Оно опреде- ляется механическими и физико-химическими факторами, поскольку роль термического и кавитационного компонентов при уровнях, создаваемых источниками ультразвука в контактных средах, незначительна.

    Специфические особенности воздействия на работающих контактного ультразвука, обусловленные его высокой биофизической активностью, проявляются в сенсорных, вегетативно-сосудистых нарушениях и изменениях опорно-двигательного аппарата верхних конечностей.

    Наряду с изменениями нейромышечного аппарата у лиц, работающих с источниками контактного ультразвука, выявляются измене- ния костной структуры в виде остеопороза, остеосклероза дистальных отделов фаланг кистей, а также некоторые другие изменения дегенеративно-дистрофического характера. Наиболее информативным рентгенологическим методом, позволяющим дать количественную характеристику состояния минеральной насыщенности костной ткани и оценить степень ее изменений, является метод рентгеноден- ситофотометрии.

    Кожа является «входными воротами» для контактного ультразвука, так как при выполнении работ с различными ультразвуковыми

    источниками в первую очередь озвучиванию подвергается кожа кистей рук работающих. Интенсивность ультразвуковых колебаний в коже кистей наиболее близка к интенсивности ультразвука на повер- хностях излучателя.

    Кожа в разных областях тела человека имеет различную чувствительность: кожа лица чувствительнее кожи живота, а кожа живота чувствительнее кожи конечностей. Ультразвук интенсивностью 0,6 Вт/см 2 (частота 2,5 МГц) вызывает гиперемию кожи, нерезко выраженный отек дермы.

    Воздействие ультразвука интенсивностью 0,4 Вт/см 2 (1-2 МГц) сопровождается закономерным снижением величины рН поверхности кожи, что свидетельствует о преимущественном использовании для энергетического обмена углеводов, так как при их усиленных превращениях в тканях накапливаются кислые продукты обмена. Возможно, изменение рН поверхности кожи под влиянием ультразвука связано с повышением функциональной активности сальных желез. При воздействии ультразвука увеличивается число активных потовых желез, а соответственно, повышается экскреция хлоридов.

    Клиническое и лабораторное обследование у дефектоскопистов выявляет следующие заболевания кожи: гипергидроз ладоней и подошв, дисгидроз ладоней и подошв, руброфития и эпидермофития стоп и кистей, себорея волосистой части головы и др. У большинства больных гипергидрозом, дисгидрозом и др. выявлена корреляция с сопутствующими заболеваниями, в частности, с нервно-сосудистыми нарушениями, проявляющимися в виде вегетативных полиневри- тов рук, вегетативно-сосудистых дисфункций. Это дает возможность связать кожную патологию с воздействием ультразвука.

    При воздействии ультразвука малой интенсивности - 20-35 мВт/см 2 (частота 1 МГц) повышается проницаемость сосудов кожи, тогда как локальное воздействие теплом, приводящее к повышению температуры кожи на 0,8-1,0 ?С, не оказывает какого-либо влияния на сосудистую проницаемость кожи. Следовательно, в процессах изменения сосудистой проницаемости кожи при воздействии ультразвуковых волн большую роль играет не термический фактор, а механический эффект. При высоких интенсивностях ультразвука сосудистая проницаемость может изменяться и посредством рефлек- торных механизмов.

    Важным моментом в действии ультразвука и его обезболивающем эффекте является помимо снижения рН среды локальная аккумуля-

    ция гистамина, способствующая торможению проведения импульсов в синапсах симпатических ганглиев.

    Считается, что ультразвуковое раздражение, попадая на рецепторный аппарат кожи, передается по всем направлениям на периферические и центральные образования симпатической и парасимпатической нервных систем как по специфическому, так и неспецифическому путям.

    Выявлены закономерности в изменении сердечно-сосудистой деятельности при воздействии контактного ультразвука. Так, при озвучивании пациентов лечебными дозами ультразвука (2,46 МГц, 1 Вт/см 2) наблюдается учащение сердечного ритма с изменением ЭКГ. Увеличение интенсивности ультразвука приводит к брадикардии, аритмии, снижению биологической активности. Аналогичные реакции наблюдаются при озвучивании не только области сердца, но и соседних с ним участков.

    Изучение сосудистых реакций организма на воздействие ультразвука при контактной передаче показало, что малые дозы высокочастотного ультразвука (0,2-1,0 Вт/см 2) вызывают сосудорасширяющий эффект, а большие дозы (3 Вт/см 2 и выше) - сосудосуживающий эффект.

    Снижение сосудистого тонуса и расширение сосудов отмечается не только в области, подвергающейся воздействию ультразвука, но и на симметричных участках, что позволяет говорить о важной роли нервно-рефлекторных механизмов в формировании ответной реакции на действие ультразвука.

    Воздействие ультразвука на организм сопровождается биохимическими изменениями: уменьшается количество белков в сыворотке крови, интенсифицируется обмен углеводов, увеличивается содержание в крови связанного билирубина, снижается активность ферментов, в частности, каталазы крови, увеличивается уровень адренокортикотропного гормона гипофиза (АКТГ) в плазме крови. Считают, что оптимальное стимулирующее действие на ферментативные процессы в тканях оказывает ультразвук интенсивностью 0,1-0,3 Вт/см 2 .

    Изучение противоопухолевого действия высокочастотного ультразвука показало, что высокие интенсивности ультразвука (3,0- 10,0 Вт/см 2) способствуют разрушению опухолевых клеток, тормозят рост опухолей.

    При воздействии высокочастотного ультразвука на костную ткань отмечается нарушение минерального обмена - уменьшается содер- жание солей кальция в костях.

    Таким образом, при воздействии контактного ультразвука возможно развитие генерализованных рефлекторно-сосудистых изменений. Однако патогенез изменений, выявленных у больных с выраженными проявлениями ультразвуковой патологии желудочно-кишечного тракта, почек, сердечно-сосудистой системы, пока изучен недостаточно.

    В настоящее время разработана математическая модель прогноза вероятности развития профессиональной патологии у работающих с источниками контактного ультразвука различной частоты в зависимости от интенсивности и длительности контакта, что позволяет определять безопасный стаж работы в профессии, т.е. управлять риском нарушения здоровья путем «защиты временем». Расчетные данные вероятности развития полиневропатии рук ультразвуковой этиологии представлены в табл. 12.3.

    Гигиеническое нормирование воздушного и контактного ультразвука. При разработке эффективных профилактических мероприятий, направленных на оптимизацию и оздоровление условий труда работников ультразвуковых профессий, на первое место выдвигаются вопросы гигиенического нормирования ультразвука как неблагоприятного физического фактора производственной среды и среды обитания.

    Материалы проведенных в ГУ НИИ медицины труда РАМН комплексных исследований послужили основанием для разработки новой системы гигиенической регламентации ультразвука, что нашло отражение в санитарных нормах и правилах «Гигиенические требования при работах с источниками воздушного и контактного ультразвука промышленного, медицинского и бытового назначения».

    Санитарные нормы и правила устанавливают гигиеническую классификацию ультразвука, воздействующего на человека-опера- тора; нормируемые параметры и предельно допустимые уровни ультразвука для работающих и населения; требования к контролю воздушного и контактного ультразвука, меры профилактики. Следует отметить, что настоящие нормы и правила не распространяются на лиц (пациентов), подвергающихся воздействию ультразвука в лечебно-диагностических целях.

    Таблица 12.3. Вероятность развития полиневропатии рук работающих с источниками контактного ультразвука, распространяющегося в жидких и твердых средах

    Нормируемыми параметрами воздушного ультразвука являются уровни звукового давления в децибелах в третьоктавных полосах со среднегеометрическими частотами 12,5; 16; 20; 25; 31,5; 40; 50; 63; 80; 100 кГц.

    Нормируемыми параметрами контактного ультразвука являются пиковые значения виброскорости или ее логарифмические уровни в дБ в октавных полосах со среднегеометрическими частотами 16; 31,5; 63; 125; 250; 500; 1000; 2000; 4000; 8000; 16 000; 31 500 кГц, определяемые по формуле:

    L v = 20 lgV/V0,

    где:

    V - пиковое значение виброскорости, м/с;

    V0 - опорное значение виброскорости, равное 5?10 -8 м/с.

    В табл. 12.4 представлены предельно допустимые уровни воздушного ультразвука на рабочих местах и контактного ультразвука в зонах контакта рук или других частей тела работающих с источни- ками ультразвуковых колебаний или средами, в которых они распространяются.

    Новые нормативы построены по спектральному принципу с учетом совместного воздействия контактного и воздушного ультразвука путем установления понижающей поправки, равной 5 дБ, к ПДУ кон- тактного ультразвука, обладающего более высокой биологической активностью.

    При использовании ультразвуковых источников бытового назначения (стиральные машины, устройства для отпугивания насекомых, грызунов, собак, охранная сигнализация и т.д.), как правило, работающих на частотах ниже 100 кГц, нормативные уровни воздушного и контактного ультразвука, воздействующего на человека, не должны превышать 75 дБ на рабочей частоте.

    Кроме санитарных правил и норм разработан ряд нормативнометодических документов, регламентирующих, в частности, условия труда медработников, использующих ультразвуковые источники в виде аппаратуры, оборудования или инструментария.

    Таблица 12.4. Предельно допустимые уровни ультразвука на рабочих местах

    Примечание. 1 Предельно допустимые уровни контактного ультразвука следует принимать на 5 дБ ниже табличных данных при совместном воздействии на работающих воздушного и контактного ультразвука.

    ультразвуковой диагностики, организации и проведению диагностических исследований, а также санитарно-гигиенические и медикопрофилактические мероприятия по ограничению неблагоприятного влияния контактного ультразвука на медперсонал. Например, в соответствии с гигиеническими рекомендациями площадь кабинета для проведения ультразвуковых исследований (УЗИ) должна быть не менее 20 м 2 при условии размещения в нем одной ультразвуковой диагностической установки. Помещение для проведения УЗИ должно иметь естественное и искусственное освещения, раковину с подводкой холодной и горячей воды, общеобменную приточновытяжную систему вентиляции с кратностью воздухообмена 1:3, допускается установка кондиционеров. В помещении следует поддерживать определенные параметры микроклимата: температура воз- духа - 22 ?С, относительная влажность 40-60%, скорость движения воздуха не выше 0,16 м/с.

    При измерении воздушного и контактного ультразвука, генерируемого бытовыми приборами и оборудованием, следует руководс-

    твоваться требованиями, изложенными в действующих санитарных нормах и правилах.

    Профилактические мероприятия. Мероприятия по защите работающих от неблагоприятного воздействия контактного ультразвука и сопутствующих факторов производственной среды и трудового процесса включают:

    1. Медико-биологический скрининг при приеме на работу с учетом субъективных (индивидуальных) и объективных (профессионально-производственных) факторов риска.

    2. Применение различных режимов труда (сменных и скользящих недельных, декадных, месячных, квартальных и др.) и контрактной системы ведения работ на срок прогнозируемой продолжительности безопасности стажа.

    3. Гигиенический, в том числе экспозиционный, и клиникофизиологический мониторинг.

    4. Мероприятия медико-профилактического характера по оздоровлению работающих.

    Медико-биологический скрининг при приеме на работу целесообразно проводить в несколько этапов:

    I-й этап - социальный отбор. Согласно действующим гигиеническим нормам и правилам, основным противопоказанием для работы в условиях воздействия ультразвука является возраст моложе 18 лет.

    II-й этап - медицинский отбор, включающий предварительный медицинский осмотр и проведение функциональных исследований с учетом специфики действия контактного ультразвука и факторов риска (как выявленных индивидуальных, так и конкретных профессионально-производственных, установленных при аттестации или лицензировании рабочего места, на которое предполагается трудоустройство).

    Предварительный медицинский осмотр проводится в соответствии с действующим приказом. При проведении предварительных медицинских осмотров следует учитывать противопоказания для работы в «ультразвуковых» профессиях, к числу которых наряду с общими медицинскими противопоказаниями к допуску на работу в контакте с вредными, опасными веществами и производственными факторами отнесены хронические заболевания периферической нервной системы, облитерирующие заболевания артерий и периферический ангиоспазм.

    Помимо медицинских противопоказаний определены индивидуальные и объективные факторы риска, способные усугублять воздействие контактного ультразвука. К субъективным (личностным) факторам риска следует отнести наследственную отягощенность по сосудистым заболеваниям, астенический тип конституции, холодовую аллергию, травмы конечностей и их отморожение в анамнезе, вегетативную лабильность, преимущественно с преобладанием тонуса симпатической нервной системы, длительный стаж работы в профессии и др.

    Объективными или производственно-профессиональными факторами риска являются высокие уровни контактного и воздушного ультразвука, передача ультразвуковых колебаний через жидкую среду, большая площадь контакта с источником, загрязнение рук контактными смазками, охлаждение рук, высокий ультразвуковой индекс источников, статическая нагрузка на мышцы пальцев и кистей рук, вынужденная поза, охлаждающий микроклимат, высокие уровни суммарного индекса одночисловой оценки комплексного воздействия факторов и т.д.

    Большое значение в профилактике ультразвукового воздействия имеют рациональные режимы труда, устанавливаемые для конкретного рабочего места или источника колебаний. При разработке режи- мов труда необходимо руководствоваться следующими принципами:

    Сокращение суммарного времени контакта и уменьшение экспозиции ультразвукового озвучивания при превышении нормативов;

    Ведение работ с регулярно прерывающимися ультразвуковыми воздействиями;

    Организация двух регламентированных перерывов, первый - продолжительностью 10 мин, второй - 15 мин для активного отдыха, проведения специального комплекса производственной гимнастики, физио-профилактических процедур и т.д. Первый перерыв рационально устраивать через 1,5-2 ч после начала смены, второй - через 1,5 ч после обеденного перерыва;

    Обеденный перерыв продолжительностью не менее 30 мин. Помимо сменных режимов труда, целесообразно внедрение сколь- зящих режимов - недельных, декадных, месячных, квартальных и т.д. Эти современные формы режимов труда наиболее приемлемы для медицинских работников, когда ультразвуковая нагрузка на работающих, превышающая допустимую, может быть равномерно разнесена во времени.

    К мероприятиям, направленным на повышение сопротивляемости организма, в том числе и при воздействии контактного ультразвука, относятся различные виды физиопрофилактических процедур, реф- лексопрофилактика, производственная гимнастика, рациональное сбалансированное питание, витаминизация, психофизиологическая разгрузка.

    Вводная гимнастика проводится до работы и рекомендуется всем без исключения работающим. Основная ее задача - поднять общий тонус организма, активизировать деятельность органов и систем, помочь быстрее включиться в рабочий ритм и сократить период врабатываемости. Комплекс включает в себя 7-9 упражнений и выполняется в течение 5-7 мин перед началом работы.

    В результате многочисленных экспериментальных исследований были подобраны наиболее эффективные способы защиты рук рабо- тающих от воздействия низкочастотного и высокочастотного ультразвука, распространяющегося в твердой и жидкой средах.

    Работающим с низкочастотными источниками

    При распространении колебаний в твердой среде - две пары плотных хлопчатобумажных перчаток;

    При распространении колебаний в жидкой среде - две пары перчаток: нижние - хлопчатобумажные и верхние - плотные рези- новые.

    Работающим с высокочастотными источниками контактного ультразвука рекомендуется применять:

    При распространении колебаний в твердой среде - одну пару хлопчатобумажных перчаток, или хлопчатобумажные перчатки с непромокаемой ладонной поверхностью (выполненной, например, из непромокаемых синтетических материалов), или хлопчатобумажные напальчники;

    При распространении колебаний в жидкой среде - две пары перчаток: нижние - хлопчатобумажные и верхние - резиновые.

    В качестве средства индивидуальной защиты от воздействия шума и воздушного ультразвука работающие должны применять противошумы - вкладыши, наушники.

    Среди мероприятий по защите работающих от ультразвукового воздействия важное место занимают вопросы обучения работающих основам законодательства об охране труда, правилам техники

    безопасности и мерам профилактики при работе с источниками контактного ультразвука; санитарное просвещение среди работающих, пропаганда здорового образа жизни.

    Мероприятия по формированию и управлению качеством производственной среды на рабочих местах с источниками ультразвука в целях снижения риска нарушения здоровья работающих. Важную роль в управлении качеством производственной среды отводят средствам и методам коллективной защиты работающих. Наиболее эффективными в этом плане считаются организационно-технические меры в источнике, снижающие уровни контактного ультразвука, воздействующего на работающих, сокращающие время контакта с ним и ограничивающие влияние неблагоприятных сопутствующих факторов производственной среды, в частности:

    Разработка и внедрение нового, усовершенствованного оборудования с улучшенными ультразвуковыми характеристиками;

    Создание автоматического ультразвукового оборудования, например, для очистки деталей, дефектоскопии, механической обработки материалов и др.;

    Создание установок с дистанционным управлением;

    Использование маломощных ультразвуковых генераторов в оборудовании, если это не противоречит требованиям технологических процессов;

    Проектирование ультразвуковых установок с рабочими частотами, максимально удаленными от слышимого диапазона частот (не ниже 22 кГц), чтобы избежать действия выраженного высокочастотного шума;

    Блокирование, т.е. автоматическое отключение оборудования, приборов при выполнении вспомогательных операций по загрузке и выгрузке продукции, нанесении контактных смазок и т.д.;

    Проектирование искателей и датчиков, удерживаемых руками, с учетом необходимости обеспечения минимального напряжения мышц кисти;

    Применение снабженных ручками сеток и различных приспособлений при загрузке и выгрузке деталей из ультразвуковых волн или специальных приспособлений (зажимов, штативов, крючков и т.д.) для удержания обрабатываемых деталей или источника ультразвука;

    Облицовка мест контакта рук оператора с источником (сканирующие устройства дефектоскопов и диагностической аппаратуры,

    рукояток ручного ультразвукового инструмента и т.д.) изоляционным материалом;

    Осуществление контроля за своевременностью проведения профилактического и текущего ремонта ультразвуковой аппаратуры и оборудования;

    Оборудование ультразвуковых установок звукоизолирующими устройствами (кожухи, экран) из листовой стали или дюрали, покрытие их резиной, противошумной мастикой или другими материалами, оборудование звукоизолирующих кабин, боксов;

    Экранировка фидерных линий;

    Оборудование эффективной вентиляции.

    Кроме того, при проектировании и разработке новой ультразвуковой аппаратуры с видеотерминальными устройствами необходимо соблюдать следующие технико-гигиенические требования:

    Яркость свечения экрана не менее 100 кд/м 2 ;

    Минимальный размер светящейся точки для монохромного дисплея - 0,4 мм, для цветного дисплея - 0,6 мм;

    Контрастность изображения знаков не менее 0,8;

    Низкочастотное дрожание изображения в диапазоне 0,05-1,0 Гц в пределах 0,1 мм;

    Частота регенерации изображения при работе с позитивным контрастом не менее 72 Гц;

    Наличие антибликерного покрытия экрана.

    Оптимизация факторов, определяющих тяжесть труда, достигается в результате правильного выбора позы за счет рациональной компоновки рабочего места. Для этого, прежде всего, необходимо подобрать производственное оборудование и рабочую мебель, соответствующие антропометрическим данным и психофизиологическим возможностям человека.

    Следует выдерживать размеры рабочей зоны, включающей пространство, в котором располагаются органы управления оборудова- нием, заготовками, деталями, инструмент, т.е. все то, что необходимо для выполнения работ.

    В процессе выполнения трудовых операций целесообразно по возможности исключить статические нагрузки, возникающие при поддержании, например, заготовок, деталей и т.д. за счет устройства верстаков, подставок для обрабатываемых деталей, а также применения манипуляторов, тележек, различных средств малой механизации для снижения динамической нагрузки и перенапряжения опорно-двигательного аппарата.

    В комплексе мероприятий по научной организации труда особое место занимают рекомендации по рационализации рабочих движений и усилий.

    Для оптимизации факторов, определяющих напряженность труда, целесообразно:

    Создание рациональной системы освещения в каждом конкретном случае (или, наоборот, затемнения, например, при дефектоскопии и ультразвуковой диагностике), правильное размещение светильников;

    Борьба с блесткостью экранов ультразвукового оборудования;

    Создание необходимого цветового климата в производственных помещениях;

    Устройство световой и звуковой индикаций дефектов при ультразвуковой дефектоскопии;

    Внедрение режимов труда и отдыха (гимнастика для глаз, производственная гимнастика, психофизиологическая разгрузка и т.д.).

    Частоты 16 Гц- 20 кГц, которые способен воспринимать слуховой аппарат человека принято называть звуковыми или акустическими, например писк комара «10 кГц. Но воздух, глубины морей и земные недра наполнены звуками, лежащими вне этого диапазона — инфра и ультразвуками. В природе ультразвук встречается в качестве компонента многих естественных шумов, в шуме ветра, водопада, дождя, морской гальки, перекатываемой прибоем, в грозовых разрядах. Многие млекопитающие, например кошки и собаки, обладают способностью восприятия ультразвука, частотой до 100 кГц, а локационные способности летучих мышей, ночных насекомых и морских животных всем хорошо известны. Существование таких звуков было обнаружено с развитием акустики только в конце XIX века. Тогда же начались первые исследования УЗ, но основы его применения были заложены только в первой трети XX-века.

    Что такое ультразвук

    Ультразвуковые волны (неслышимый звук) по своей природе не отличаются от волн слышимого диапазона и подчиняются тем же физическим законам. Но у ультразвука есть специфические особенности, которые определили его широкое применение в науке и технике.

    Вот основные из них:

    • Малая длина волны. Для самого низкого УЗ диапазона длина волны не превышает в большинстве сред нескольких сантиметров. Малая длина волны обуславливает лучевой характер распространения УЗ волн. Вблизи излучателя УЗ распространяется в виде пучков, по размеру близких к размеру излучателя. Попадая на неоднородности в среде, УЗ пучок ведёт себя, как световой луч испытывая отражение, преломление, рассеяние, что позволяет в оптически непрозрачных средах формировать звуковые изображения, используя чисто оптические эффекты (фокусировку, дифракцию и др.)
    • Малый период колебаний, что позволяет излучать ультразвук в виде импульсов и осуществлять в среде точную временную селекцию распространяющихся сигналов.
    • Возможность получения высоких значений интенсивности колебаний при малой амплитуде, т.к. энергия колебаний пропорциональна квадрату частоты. Это позволяет создавать УЗ пучки и поля с высоким уровнем энергии, не требуя при этом крупногабаритной аппаратуры.
    • В ультразвуковом поле развиваются значительные акустические течения, поэтому воздействие ультразвука на среду порождает специфические физические, химические, биологические и медицинские эффекты, такие как кавитация, капиллярный эффект, диспергирование, эмульгирование, дегазация, обеззараживание, локальный нагрев и многие другие.

    История ультразвука

    Внимание к акустике было вызвано потребностями морского флота ведущих держав — Англии и Франции, т.к. акустический — единственный вид сигнала, способный далеко распространяться в воде. В 1826 году французский учёный Колладон определил скорость звука в воде. Эксперимент Колладона считается рождением современной гидроакустики. Удар в подводный колокол в Женевском озере происходил с одновременным поджогом пороха. Вспышка от пороха наблюдалась Колладоном на расстоянии 10 миль. Он также слышал звук колокола при помощи подводной слуховой трубы. Измеряя временной интервал между этими двумя событиями, Колладон вычислил скорость звука — 1435 м/сек. Разница с современными вычислениями только 3 м/сек.

    В 1838 году, в США, звук впервые применили для определения профиля морского дна. Источником звука, как и в опыте Колладона, был колокол, звучащий под водой, а приёмником большие слуховые трубы, опускавшиеся за борт. Результаты опыта были неутешительными — звук колокола, также как и подрыв в воде пороховых патронов, давал слишком слабое эхо, почти не слышное среди других звуков моря. Надо было уходить в область более высоких частот, позволяющих создавать направленные звуковые пучки.

    Первый генератор ультразвука сделал в 1883 году англичанин Гальтон. Ультразвук создавался подобно звуку высокого тона на острие ножа, когда на него попадает поток воздуха. Роль такого острия в свистке Гальтона играл цилиндр с острыми краями. Воздух (или другой газ), выходящий под давлением через кольцевое сопло, диаметром таким же, как и кромка цилиндра, набегал на неё и возникали высокочастотные колебания. Продувая свисток водородом, удалось получить колебания до 170 кГц.

    В 1880 году Пьер и Жак Кюри сделали решающее для ультразвуковой техники открытие. Братья Кюри заметили, что при оказании давления на кристаллы кварца генерируется электрический заряд, прямо пропорциональный прикладываемой к кристаллу силе. Это явление было названо «пьезоэлектричество» от греческого слова, означающего «нажать». Кроме того, они продемонстрировали обратный пьезоэлектрический эффект, который проявлялся тогда, когда быстро изменяющийся электрический потенциал применялся к кристаллу, вызывая его вибрацию. Отныне появилась техническая возможность изготовления малогабаритных излучателей и приёмников ультразвука.

    Гибель «Титаника» от столкновения с айсбергом, необходимость борьбы с новым оружием — подводными лодками требовали быстрого развития ультразвуковой гидроакустики. В 1914 году, французский физик Поль Ланжевен совместно с русским учёным, жившим в Швейцарии — Константином Шиловским впервые разработали гидролокатор, состоящий из излучателя ультразвука и гидрофона — приёмника УЗ колебаний, основанный на пьезоэффекте. Гидролокатор Ланжевена — Шиловского, был первым ультразвуковым устройством, применявшимся на практике. Также в начале века российский ученый С.Я.Соколов разработал основы ультразвуковой дефектоскопии в промышленности. В 1937 году немецкий врач-Упсихиатр Карл Дуссик, вместе с братом Фридрихом, физиком, впервые применили ультразвук для обнаружения опухолей головного мозга, но результаты полученные ими оказались недостоверными. В медицинской диагностике ультразвук начал применяться только с 50-х годов XX-го века в США.

    Применение ультразвука

    Многообразные применения ультразвука можно условно разделить на три направления:

    1. получение информации посредством ультразвука
    2. воздействие на вещество, существо
    3. обработка и передача сигналов

    Зависимость скорости распространения и затухания акустических волн от свойств вещества и процессов в них происходящих, используется для:

    • контроля протекания химических реакций, фазовых переходов, полимеризации и др.
    • определения прочностных характеристик и состава материалов,
    • определения наличия примесей,
    • определения скорости течения жидкости и газа

    С помощью ультразвука можно стирать, отпугивать грызунов, использовать в медицине, проверять различные материалы на наличие дефектов и еще много чего интересного.

    Ультразвук - это звуковые волны, которые имеют частоту не воспринимаемые человеческим ухом, обычно, частотой выше 20 000 герц.

    В природной среде ультразвук может генерироваться в различных естественных шумах (водопад, ветер, дождь). Многие представители фауны используют ультразвук для ориентирования в пространстве (летучие мыши, дельфины, киты)

    Источники ультразвука можно подразделить на две большие группы.

    1. Излучатели-генераторы — колебания в них возбуждаются из-за наличия препятствий на пути постоянного потока - струи газа или жидкости.
    2. Электроакустические преобразователи; они преобразуют уже заданные колебания электрического напряжения или тока в механическое колебание твёрдого тела, которое и излучает в окружающую среду акустические волны.

    Наука об ультразвуке относительно молода. В конце 19 века русский ученый – физиолог П. Н. Лебедев впервые провел исследования ультразвука.

    В настоящее время применение ультразвука достаточно велико. Так как ультразвук довольно легко направить концентрированным «пучком», то его применяют в различных областях: при этом применение основано на различных свойствах ультразвука.

    Условно можно выделить три направления использования ультразвука:

    1. Передача и обработка сигналов
    2. Получение с помощью УЗ волн различной информации
    3. Воздействие ультразвука на вещество.

    В этой статье мы затронем лишь малую часть возможностей применения УЗ.

    1. Медицина. УЗ используется как в стоматологии, так и в хирургии, а так же применятся для Ультразвуковых исследований внутренних органов.
    2. Очистка с помощью ультразвука. Особенно наглядно это демонстрируется на примере центра ультрозвукового оборудования ПСБ-Галс. В частности можно рассмотреть применение ультразвуковых ванн http://www.psb-gals.ru/catalog/usc.html , которые используются для очистки, смешивания, перемешивания, измельчения, дегазации жидкостей, ускорения химических реакций, экстракции сырья, получения стойких эмульсий и так далее.
    3. Обработка хрупких или сверхтвердых материалов. Преобразование материалов происходит посредством множества микроударов

    Это только малейшая часть использования ультразвуковых волн. Если вам интересно – оставляйте комментарии и мы раскроем тему более подробно.

    Ультразвук………………………………………………………………….4

    Ультразвук как упругие волны……………………………………..4

    Специфические особенности ультразвука………………………………..5

    Источники и приемники ультразвука……………………………………..7

    Механические излучатели…………………………………………...7

    Электроакустические преобразователи…………………………….9

    Приемники ультразвука……………………………………………..11

    Применение ультразвука…………………………………………………...11

    Ультразвуковая очистка……………………………………………...11

    Механическая обработка сверхтвердых и хрупких

    материалов……………………………………………………………13

    Ультразвуковая сварка……………………………………………….14

    Ультразвуковая пайка и лужение……………………………………14

    Ускорение производственных процессов………………..…………15

    Ультразвуковая дефектоскопия…………………………..…………15

    Ультразвук в радиоэлектронике………………………..……………17

    Ультразвук в медицине………………………………..……………..18

    Литература…………………………………………………..……………….19

    ведение.

    Двадцать первый век - век атома, покорения космоса, радиоэлектроники и ультразвука. Наука об ультразвуке сравнительно молодая. Первые лабораторные работы по исследованию ультразвука были проведены великим русским ученым-физиком П. Н. Лебедевым в конце XIX, а затем ультразвуком занимались многие видные ученые.

    Ультразвук представляет собой волнообразно распространяющееся колебательное движение частиц среды. Ультразвук имеет некоторые особенности по сравнению со звуками слышимого диапазона. В ультразвуковом диапазоне сравнительно легко получить направленное излучение; он хорошо поддается фокусировке, в результате чего повышается интенсивность ультразвуковых колебаний. При распространении в газах, жидкостях и твердых телах ультразвук порождает интересные явления, многие из которых нашли практическое применение в различных областях науки и техники.

    В последние годы ультразвук начинает играть все большую роль в научных исследованиях. Успешно проведены теоретические и экспериментальные исследования в области ультразвуковой кавитации и акустических течений, позволившие разработать новые технологические процессы, протекающие при воздействии ультразвука в жидкой фазе. В настоящее время формируется новое направление химии – ультразвуковая химия, позволяющая ускорить многие химико-технологические процессы. Научные исследования способствовали зарождению нового раздела акустики – молекулярной акустики, изучающей молекулярное взаимодействие звуковых волн с веществом. Возникли новые области применения ультразвука: интроскопия, голография, квантовая акустика, ультразвуковая фазомерия, акустоэлектроника.

    Наряду с теоретическими и экспериментальными исследованиями в области ультразвука выполнено много практических работ. Разработаны универсальные и специальные ультразвуковые станки, установки, работающие под повышенным статическим давлением, ультразвуковые механизированные установки для очистки деталей, генераторы с повышенной частотой и новой системой охлаждения, преобразователи с равномерно распределенным полем. Созданы и внедрены в производство автоматические ультразвуковые установки, которые включаются в поточные линии, позволяющие значительно повысить производительность труда.

    льтразвук.

    Ультразвук (УЗ) – упругие колебания и волны, частота которых превышает 15 – 20 кГц. Нижняя граница области УЗ-вых частот, отделяющая ее от области слышимого звука, определяется субъективными свойствами человеческого слуха и является условной, так как верхняя граница слухового восприятия у каждого человека своя. Верхняя граница УЗ-вых частот обусловлена физической природой упругих волн, которые могут распространяться лишь в материальной среде, т.е. при условии, что длина волны значительно больше длины свободного пробега молекул в газе или межатомных расстояний в жидкостях и твердых телах. В газах при нормальном давлении верхняя граница частот УЗ составляет » 10 9 Гц, в жидкостях и твердых телах граничная частота достигает 10 12 -10 13 Гц. В зависимости от длины волны и частоты УЗ обладает различными специфическими особенностями излучения, приема, распространения и применения, поэтому область УЗ-вых частот подразделяют на три области:

    · низкие УЗ-вые частоты (1,5×10 4 – 10 5 Гц);

    · средние (10 5 – 10 7 Гц);

    · высокие (10 7 – 10 9 Гц).

    Упругие волны с частотами 10 9 – 10 13 Гц принято называть гиперзвуком.

    Ультразвук как упругие волны.

    УЗ-вые волны (неслышимый звук) по своей природе не отличаются от упругих волн слышимого диапазона. В газах и жидкостях распространяются только продольные волны, а в твердых телах – продольные и сдвигов ые.

    Распространение ультразвука подчиняется основным законам, общими для акустических волн любого диапазона частот. К основным законам распространения относятся законы отражения звука и преломления звука на границах различных сред, дифракции звука и рассеяния звука при наличии препятствий и неоднородностей в среде и неровностей на границах, законы волноводного распространения в ограниченных участках среды. Существенную роль при этом играет соотношение между длиной волны звука l и геометрическим размером D – размером источника звука или препятствия на пути волны, размером неоднородностей среды. При D>>l распространение звука вблизи препятствий происходит в основном по законам геометрической акустики (можно пользоваться законами отражения и преломления). Степень отклонения от геометрической картины распространения и необходимость учета дифракционных явлений определяются параметром

    , где r – расстояние от точки наблюдения до объекта, вызывающего дифракцию.

    Скорость распространения УЗ-вых волн в неограниченной среде определяется характеристиками упругости и плотностью среды. В ограниченных средах на скорость распространения волн влияет наличие и характер границ, что приводит к частотной зависимости скорости (дисперсия скорости звука). Уменьшение амплитуды и интенсивности УЗ-вой волны по мере ее распространения в заданном направлении, то есть затухание звука, вызывается, как и для волн любой частоты, расхождением фронта волны с удалением от источника, рассеянием и поглощением звука. На всех частотах как слышимого, так и неслышимых диапазонов имеет место так называемое «классическое» поглощение, вызванное сдвиговой вязкостью (внутренним трением) среды. Кроме того, существует дополнительное (релаксационное) поглощение, часто существенно превосходящее «классическое» поглощение.

    При значительной интенсивности звуковых волн появляются нелинейные эффекты:

    · нарушается принцип суперпозиции и возникает взаимодействие волн, приводящее к появлению тонов;

    · изменяется форма волны, ее спектр обогащается высшими гармониками и соответственно растет поглощение;

    · при достижении некоторого порогового значения интенсивности УЗ в жидкости возникает кавитация (см. ниже).

    Критерием применимости законов линейной акустики и возможности пренебрежения нелинейными эффектами является: М << 1, где М = v/c, v – колебательная скорость частиц в волне, с – скорость распространения волны.

    Параметр М называется «число Маха».

    пецифические особенности ультразвука

    Хотя физическая природа УЗ и определяющие его распространение основные законы те же, что и для звуковых волн любого диапазона частот, он обладает рядом специфических особенностей. Эти особенности обусловлены относительно высокими частотами УЗ.

    Малость длины волны определяет лучевой характер распространения УЗ-вых волн. Вблизи излучателя волны распространяются в виде пучков, поперечный размер которых сохраняется близким к размеру излучателя. Попадая на крупные препятствия такой пучок (УЗ луч) испытывает отражение и преломление. При попадании луча на малые препятствия возникает рассеянная волна, что позволяет обнаруживать в среде малые неоднородности (порядка десятых и сотых долей мм.). Отражение и рассеяние УЗ на неоднородностях среды позволяют формировать в оптически непрозрачных средах звуковые изображения предметов, используя звуковые фокусирующие системы, подобно тому, как это делается с помощью световых лучей.

    Фокусировка УЗ позволяет не только получать звуковые изображения (системы звуковидения и акустической голографии), но и концентрировать звуковую энергию. С помощью УЗ-вых фокусирующих систем можно формировать заданные характеристики направленности излучателей и управлять ими.

    Периодическое изменение показателя преломления световых волн, связанное с изменением плотности в УЗ-волне, вызывает дифракцию света на ультразвуке , наблюдаемую на частотах УЗ мегагерцевого-гигагерцевого диапазона. УЗ волну при этом можно рассматривать как дифракционную решетку.

    Важнейшим нелинейным эффектом в УЗ-вом поле является кавитация – возникновение в жидкости массы пульсирующих пузырьков, заполненных паром, газом или их смесью. Сложное движение пузырьков, их схлопывание, слияние друг с другом и т.д. порождают в жидкости импульсы сжатия (микроударные волны) и микропотоки, вызывают локальное нагревание среды, ионизацию. Эти эффекты оказывают влияние на вещество: происходит разрушение находящихся в жидкости твердых тел (кавитационная эрозия ), возникает перемешивание жидкости, инициируются или ускоряются различные физические и химические процессы. Изменяя условия протекания кавитации, можно усиливать или ослаблять различные кавитационные эффекты, например с ростом частоты УЗ увеличивается роль микропотоков и уменьшается кавитационная эрозия, с увеличением давления в жидкости возрастает роль микроударных воздействий. Увеличение частоты приводит к повышению порогового значения интенсивности, соответствующей началу кавитации, которое зависит от рода жидкости, ее газосодержания, температуры и т.д.. Для воды при атмосферном давлении оно обычно составляет 0,3¸1,0 Вт/см 2 . Кавитация – сложный комплекс явлений. УЗ-вые волны, распространяющиеся в жидкости, образуют чередующиеся области высоких и низких давлений, создающих зоны высоких сжатий и зоны разрежений. В разреженной зоне гидростатическое давление понижается до такой степени, что силы, действующие на молекулы жидкости, становятся больше сил межмолекулярного сцепления. В результате резкого изменения гидростатического равновесия жидкость «разрывается», образуя многочисленные мельчайшие пузырьки газов и паров. В следующий момент, когда в жидкости наступает период высокого давления, образовавшиеся ранее пузырьки схлопываются. Процесс схлопывания пузырьков сопровождается образованием ударных волн с очень большим местным мгновенным давлением, достигающим нескольких сотен атмосфер.