Войти
Автожурнал "Форсаж"
  • Окислительно-восстановительные реакции
  • Окислительно-восстановительные реакции
  • Полинейропатия: что это за болезнь и как ее лечить
  • Морфология простейших, особенности классификации Морфологические особенности простейших
  • Семинома яичка – скрытая опасность Классическая семинома с признаками лимфа сосудистой инвазии
  • Куперит – большие мужские проблемы из-за маленькой железы
  • Окислительно восстановительные реакции 9. Окислительно-восстановительные реакции. Процессы в ОВР

    Окислительно восстановительные реакции 9. Окислительно-восстановительные реакции. Процессы в ОВР

    На уроке рассматривается сущность окислительно-восстановительных реакций, их отличие от реакций ионного обмена. Объясняются изменения степеней окисления окислителя и восстановителя. Вводится понятие электронного баланса.

    Тема: Окислительно-восстановительные реакции

    Урок: Окислительно-восстановительные реакции

    Рассмотрим реакцию магния с кислородом. Запишем уравнение этой реакции и расставим значения степеней окисления атомов элементов:

    Как видно, атомы магния и кислорода в составе исходных веществ и продуктов реакции имеют различные значения степеней окисления. Запишем схемы процессов окисления и восстановления, происходящих с атомами магния и кислорода.

    До реакции атомы магния имели степень окисления, равную нулю, после реакции - +2. Таким образом, атом магния потерял 2 электрона:

    Магний отдает электроны и сам при этом окисляется, значит, он является восстановителем.

    До реакции степень окисления кислорода была равна нулю, а после реакции стала -2. Таким образом, атом кислорода присоединил к себе 2 электрона:

    Кислород принимает электроны и сам при этом восстанавливается, значит, он является окислителем.

    Запишем общую схему окисления и восстановления:

    Число отданных электронов равно числу принятых. Электронный баланс соблюдается.

    В окислительно-восстановительных реакциях происходят процессы окисления и восстановления, а значит, меняются степени окисления химических элементов. Это отличительный признак окислительно-восстановительных реакций .

    Окислительно-восстановительными называют реакции, в которых химические элементы изменяют свою степень окисления

    Рассмотрим на конкретных примерах, как отличить окислительно-восстановительную реакцию от прочих реакций.

    1. NaOH + HCl = NaCl + H 2 O

    Для того чтобы сказать, является ли реакция окислительно-восстановительной, необходимо расставить значения степеней окисления атомов химических элементов.

    1-2+1 +1-1 +1 -1 +1 -2

    1. NaOH + HCl = NaCl + H 2 O

    Обратите внимание, степени окисления всех химических элементов слева и справа от знака равенства остались неизменными. Значит, эта реакция не является окислительно-восстановительной.

    4 +1 0 +4 -2 +1 -2

    2. СН 4 + 2О 2 = СО 2 + 2Н 2 О

    В результате данной реакции степени окисления углерода и кислорода поменялись. Причем углерод повысил свою степень окисления, а кислород понизил. Запишем схемы окисления и восстановления:

    С -8е =С - процесс окисления

    О +2е = О - процесс восстановления

    Чтобы число отданных электронов было равно числу принятых, т.е. соблюдался электронный баланс , необходимо домножить вторую полуреакцию на коэффициент 4:

    С -8е =С - восстановитель, окисляется

    О +2е = О 4 окислитель, восстанавливается

    Окислитель в ходе реакции принимает электроны, понижая свою степень окисления, он восстанавливается.

    Восстановитель в ходе реакции отдает электроны, повышая свою степень окисления, он окисляется.

    1. Микитюк А.Д. Сборник задач и упражнений по химии. 8-11 классы / А.Д. Микитюк. - М.: Изд. «Экзамен», 2009. (с.67)

    2. Оржековский П.А. Химия: 9-й класс: учеб. для общеобраз. учрежд. / П.А. Оржековский, Л.М. Мещерякова, Л.С. Понтак. - М.: АСТ: Астрель, 2007. (§22)

    3. Рудзитис Г.Е. Химия: неорган. химия. Орган. химия: учеб. для 9 кл. / Г.Е. Рудзитис, Ф.Г. Фельдман. - М.: Просвещение, ОАО «Московские учебники», 2009. (§5)

    4. Хомченко И.Д. Сборник задач и упражнений по химии для средней школы. - М.: РИА «Новая волна»: Издатель Умеренков, 2008. (с.54-55)

    5. Энциклопедия для детей. Том 17. Химия / Глав. ред. В.А. Володин, вед. науч. ред. И. Леенсон. - М.: Аванта+, 2003. (с.70-77)

    Дополнительные веб-ресурсы

    1. Единая коллекция цифровых образовательных ресурсов (видеоопыты по теме) ().

    2. Единая коллекция цифровых образовательных ресурсов (интерактивные задачи по теме) ().

    3. Электронная версия журнала «Химия и жизнь» ().

    Домашнее задание

    1. №10.40 - 10.42 из «Сборника задач и упражнений по химии для средней школы» И.Г. Хомченко, 2-е изд., 2008 г.

    2. Участие в реакции простых веществ - верный признак окислительно-восстановительной реакции. Объясните почему. Напишите уравнения реакций соединения, замещения и разложения с участием кислорода О 2 .

    На уроке рассматривается сущность окислительно-восстановительных реакций, их отличие от реакций ионного обмена. Объясняются изменения степеней окисления окислителя и восстановителя. Вводится понятие электронного баланса.

    Тема: Окислительно-восстановительные реакции

    Урок: Окислительно-восстановительные реакции

    Рассмотрим реакцию магния с кислородом. Запишем уравнение этой реакции и расставим значения степеней окисления атомов элементов:

    Как видно, атомы магния и кислорода в составе исходных веществ и продуктов реакции имеют различные значения степеней окисления. Запишем схемы процессов окисления и восстановления, происходящих с атомами магния и кислорода.

    До реакции атомы магния имели степень окисления, равную нулю, после реакции - +2. Таким образом, атом магния потерял 2 электрона:

    Магний отдает электроны и сам при этом окисляется, значит, он является восстановителем.

    До реакции степень окисления кислорода была равна нулю, а после реакции стала -2. Таким образом, атом кислорода присоединил к себе 2 электрона:

    Кислород принимает электроны и сам при этом восстанавливается, значит, он является окислителем.

    Запишем общую схему окисления и восстановления:

    Число отданных электронов равно числу принятых. Электронный баланс соблюдается.

    В окислительно-восстановительных реакциях происходят процессы окисления и восстановления, а значит, меняются степени окисления химических элементов. Это отличительный признак окислительно-восстановительных реакций .

    Окислительно-восстановительными называют реакции, в которых химические элементы изменяют свою степень окисления

    Рассмотрим на конкретных примерах, как отличить окислительно-восстановительную реакцию от прочих реакций.

    1. NaOH + HCl = NaCl + H 2 O

    Для того чтобы сказать, является ли реакция окислительно-восстановительной, необходимо расставить значения степеней окисления атомов химических элементов.

    1-2+1 +1-1 +1 -1 +1 -2

    1. NaOH + HCl = NaCl + H 2 O

    Обратите внимание, степени окисления всех химических элементов слева и справа от знака равенства остались неизменными. Значит, эта реакция не является окислительно-восстановительной.

    4 +1 0 +4 -2 +1 -2

    2. СН 4 + 2О 2 = СО 2 + 2Н 2 О

    В результате данной реакции степени окисления углерода и кислорода поменялись. Причем углерод повысил свою степень окисления, а кислород понизил. Запишем схемы окисления и восстановления:

    С -8е =С - процесс окисления

    О +2е = О - процесс восстановления

    Чтобы число отданных электронов было равно числу принятых, т.е. соблюдался электронный баланс , необходимо домножить вторую полуреакцию на коэффициент 4:

    С -8е =С - восстановитель, окисляется

    О +2е = О 4 окислитель, восстанавливается

    Окислитель в ходе реакции принимает электроны, понижая свою степень окисления, он восстанавливается.

    Восстановитель в ходе реакции отдает электроны, повышая свою степень окисления, он окисляется.

    1. Микитюк А.Д. Сборник задач и упражнений по химии. 8-11 классы / А.Д. Микитюк. - М.: Изд. «Экзамен», 2009. (с.67)

    2. Оржековский П.А. Химия: 9-й класс: учеб. для общеобраз. учрежд. / П.А. Оржековский, Л.М. Мещерякова, Л.С. Понтак. - М.: АСТ: Астрель, 2007. (§22)

    3. Рудзитис Г.Е. Химия: неорган. химия. Орган. химия: учеб. для 9 кл. / Г.Е. Рудзитис, Ф.Г. Фельдман. - М.: Просвещение, ОАО «Московские учебники», 2009. (§5)

    4. Хомченко И.Д. Сборник задач и упражнений по химии для средней школы. - М.: РИА «Новая волна»: Издатель Умеренков, 2008. (с.54-55)

    5. Энциклопедия для детей. Том 17. Химия / Глав. ред. В.А. Володин, вед. науч. ред. И. Леенсон. - М.: Аванта+, 2003. (с.70-77)

    Дополнительные веб-ресурсы

    1. Единая коллекция цифровых образовательных ресурсов (видеоопыты по теме) ().

    2. Единая коллекция цифровых образовательных ресурсов (интерактивные задачи по теме) ().

    3. Электронная версия журнала «Химия и жизнь» ().

    Домашнее задание

    1. №10.40 - 10.42 из «Сборника задач и упражнений по химии для средней школы» И.Г. Хомченко, 2-е изд., 2008 г.

    2. Участие в реакции простых веществ - верный признак окислительно-восстановительной реакции. Объясните почему. Напишите уравнения реакций соединения, замещения и разложения с участием кислорода О 2 .

    Цель: отработка умений и навыков составления уравнений окислительно-восстановительных процессов с участием органических соединений.

    Методы: рассказ, работа с презентацией, обсуждение, самостоятельная работа, коллективная работа.

    Преподаватель:

    Что же представляют собой окислительно – восстановительные реакции с точки зрения понятия «степень окисления химических элементов»? (слайд 2)

    / Окислительно – восстановительные реакции – это такие реакции, в которых одновременно протекают процессы окисления и восстановления и, как правило, изменяются степени окисления элементов./

    Рассмотрим процесс на примере взаимодействия уксусного альдегида с концентрированной серной кислотой:

    При составлении этого уравнения используется метод электронного баланса. Метод основан на сравнении степеней окисления атомов в исходных веществах и продуктах реакции. Основное требование при составлении уравнений этим методом: число отданных электронов должно быть равно числу принятых электронов.

      Окислительно - восстановительные реакции – это такие реакции, при которых происходит переход электронов от одних атомов, молекул или ионов к другим.

      Окисление – это процесс отдачи электронов, степень окисления при этом повышается.

      Восстановление – это процесс присоединения электронов, степень окисления при этом понижается.

      Атомы, молекулы или ионы, отдающие электроны, окисляются; являются восстановителями.
      Атомы, ионы или молекулы, принимающие электроны, восстанавливаются; являются окислителями.

      Окисление всегда сопровождается восстановлением, восстановление связано с окислением.

      Окислительно – восстановительные реакции – единство двух противоположных процессов: окисления и восстановления.

    Самостоятельная работа № 2 по инструктивной карте: методом электронного баланса найдите и поставьте коэффициенты в следующей схеме окислительно –восстановительной реакции:

    MnO 2 + H 2 SO 4 → MnSO 4 + O 2 + H 2 O (2MnO 2 + 2H 2 SO 4 → 2MnSO 4 + O 2 +2H 2 O)

    Преподаватель:

    Однако научиться находить коэффициенты в ОВР еще не значит уметь их составлять. Нужно знать поведение веществ в ОВР, предусматривать ход реакций, определять состав образующихся продуктов в зависимости от условий реакции.

    Для того чтобы разобраться, в каких случаях элементы ведут себя как окислители, а в каких – как восстановители, нужно обратиться к периодической системе Д.И.Менделеева. Если речь идет о простых веществах, то восстановительные свойства должны быть присущи тем элементам, которые имеют больший по сравнению с остальными атомный радиус и небольшое (1 - 3) число электронов на внешнем энергетическом уровне. Поэтому они могут сравнительно легко их отдавать. Это в основном металлы. Наиболее сильными восстановительными свойствами из них обладают щелочные и щелочноземельные металлы, расположенные в главных подгруппах I и II групп (например, натрий, калий, кальций и др.).

    Наиболее типичные неметаллы, имеющие близкую к завершению структуру внешнего электронного слоя и значительно меньший по сравнению с металлами того же периода атомный радиус, довольно легко принимают электроны и ведут себя в окислительно-восстановительных реакциях как окислители. Наиболее сильными окислителями являются легкие элементы главных подгрупп VI – VII групп, например фтор, хлор, бром, кислород, сера и др.

    Вместе с тем надо помнить, что деление простых веществ на окислители и восстановители так же относительно, как и деление на металлы и неметаллы. Если неметаллы попадают в среду, где присутствует более сильный окислитель, то они могут проявлять восстановительные свойства. Элементы в разных степенях окисления могут вести себя по-разному.

    Если элемент имеет свою высшую степень окисления, то он может быть только окислителем. Например, в HN +5 O 3 азот в состоянии + 5 может быть только окислителем и принимать электроны.

    Только восстановителем может быть элемент, находящийся в низшей степени окисления. Например, в N -3 Н 3 азот в состоянии -3 может отдавать электроны, т.е. является восстановителем.

    Элементы в промежуточных положительных степенях окисления могут, как отдавать, так и принимать электроны и, следовательно, способны вести себя как окислители или восстановители в зависимости от условий. Например, N +3 , S +4 . Попадая в среду с сильным окислителем, ведут себя как восстановители. И, наоборот, в восстановительной среде они ведут себя как окислители.

    По окислительно – восстановительным свойствам вещества можно разделить на три группы:

      окислители

      восстановители

      окислители - восстановители

    Самостоятельная работа № 3 по инструктивной карте: в какой из приведенных схем уравнений реакций MnO 2 проявляет свойства окислителя, а в какой – свойства восстановителя:

      2MnO 2 + O 2 + 4KOH = 2K 2 MnO 4 + 2H 2 O (MnO 2 – восстановитель)

      MnO 2 + 4HCI = MnCI 2 + CI 2 + 2H 2 O (MnO 2 – окислитель)

    Важнейшие окислители и продукты их восстановления

    1. Серная кислота - Н 2 SO 4 является окислителем

    А) Уравнение взаимодействия цинка с разбавленной Н 2 SO 4 (слайд 3)

    Какой ион является окислителем в данной реакции? (H +)

    Продуктом восстановления металлом, стоящим в ряду напряжения до водорода, является H2.

    Б) Рассмотрим другую реакцию – взаимодействие цинка с концентрированной Н 2 SO 4 (слайд 4)

    Какие атомы меняют степень окисления? (цинк и сера)

    Концентрированная серная кислота (98%) содержит 2% воды, и соль получается в растворе. В реакции участвуют фактически сульфат – ионы. Продуктом восстановления является сероводород.

    В зависимости от активности металла продукты восстановления концентрированной Н 2 SO 4 разные: H 2 S, S, SO 2 .

    2. Другая кислота – азотная – также окислитель за счет нитрат – иона NO 3 - . Окислительная способность нитрат – иона значительно выше иона H+, и ион водорода не восстанавливается до атома, поэтому при взаимодействии азотной кислоты с металлами, никогда не выделяется водород, а образуются различные соединения азота. Это зависит от концентрации кислоты и активности металла. Разбавленная азотная кислота восстанавливается глубже, чем концентрированная (для одного и того же металла) (слайд 6)

    На схемах указаны продукты, содержание которых максимально среди возможных продуктов восстановления кислот

    Золото и платина не реагируют с HNO3, но эти металлы растворяются в «царской водке» - смеси концентрированных соляной и азотной кислот в соотношении 3: 1.

    Au + 3HCI (конц.) + HNO 3 (конц.) = AuCI 3 + NO + 2H 2 O

    3. Наиболее сильным окислителем из числа простых веществ является фтор. Но он слишком активен, и его трудно получить в свободном виде. Поэтому в лабораториях в качестве окислителя используют перманганат калия KMnO 4 . Его окислительная способность зависит от концентрации раствора, температуры и среды.

    Создание проблемной ситуации: Я готовила к уроку раствор перманганата калия («марганцовка»), пролила стакан с раствором и испачкала свой любимый химический халат. Предложите (проделав лабораторный опыт) вещество, с помощью которого можно очистить халат.

    Реакции окисления – восстановления могут протекать в различных средах. В зависимости от среды может изменяться характер протекания реакции между одними и теми же веществами: среда влияет на изменение степеней окисления атомов.

    Обычно для создания кислотной среды добавляют серную кислоту. Соляную и азотную применяют реже, т.к. первая способна окисляться, а вторая сама является сильным окислителем и может вызвать побочные процессы. Для создания щелочной среды применяют гидроксид калия или натрия, нейтральной – воду.

    Лабораторный опыт: (правила ТБ)

    В четыре пронумерованные пробирки налито по 1-2 мл разбавленного раствора перманганата калия. В первую пробирку добавьте несколько капель раствора серной кислоты, во вторую – воду, в третью – гидроксид калия, четвертую пробирку оставьте в качестве контрольной. Затем в первые три пробирки прилейте, осторожно взбалтывая, раствор сульфита натрия. Отметьте. Как изменяется окраска раствора в каждой пробирке. (слайды 7, 8)

    Результаты лабораторного опыта:

    Продукты восстановления KMnO 4 (MnO 4) - :

      в кислой среде – Mn+ 2 (соль), бесцветный раствор;

      в нейтральной среде – MnO 2 , бурый осадок;

      в щелочной среде - MnO 4 2- , раствор зеленого цвета. (слайд 9,)

    К схемам реакций:

    KMnO 4 + Na 2 SO 3 + H 2 SO 4 → MnSO 4 + Na 2 SO 4 + K 2 SO 4 + H 2 O

    KMnO 4 + Na 2 SO 3 + H 2 O → MnO 2 ↓ + Na 2 SO 4 + KOH

    KMnO 4 + Na 2 SO 3 + КOH → Na 2 SO 4 + K 2 MnO 4 + H 2 O

    Подберите коэффициенты методом электронного баланса. Укажите окислитель и восстановитель (слайд 10)

    (Задание разноуровневое: сильные учащиеся записывают продукты реакции самостоятельно)

    Вы проделали лабораторный опыт, предложите вещество, с помощью которого можно очистить халат.

    Демонстрационный опыт:

    Пятна от раствора перманганата калия быстро выводятся раствором пероксида водорода, подкисленным уксусной кислотой:

    2KMnO 4 + 9H 2 O2 + 6CH 3 COOH = 2Mn(CH 3 COO) 2 +2CH 3 COOK + 7O 2 + 12H 2 O

    Старые пятна перманганата калия содержат оксид марганца (IV), поэтому будет протекать еще одна реакция:

    MnO 2 + 3H 2 O 2 + 2CH 3 COOH = Mn(CH 3 COO) 2 + 2O 2 + 4H 2 O (слайд 12)

    После выведения пятен кусок ткани необходимо промыть водой.

    Преподаватель:

    Значение окислительно – восстановительных реакций

    Цель: Показать учащимся значение окислительно-восстановительных реакций в химии, технологии, повседневной жизни человека. Методы: работа с презентацией, обсуждение, самостоятельная работа, коллективная работа.

    В рамках одного урока невозможно рассмотреть все многообразие окислительно-восстановительных реакций. Но их значение в химии, технологии, повседневной жизни человека трудно переоценить. Окислительно-восстановительные реакции лежат в основе получения металлов и сплавов, водорода и галогенов, щелочей и лекарственных препаратов. С окислительно – восстановительными реакциями связано функционирование биологических мембран, многие природные процессы: обмен веществ, брожение, дыхание, фотосинтез. Без понимания сущности и механизмов протекания окислительно-восстановительных реакций невозможно представить работу химических источников тока (аккумуляторов и батареек), получение защитных покрытий, виртуозную обработку металлических поверхностей изделий. Для целей отбеливания и дезинфекции пользуются окислительными свойствами таких наиболее известных средств, как пероксид водорода, перманганат калия, хлор и хлорная, или белильная, известь. Хлор как сильный окислитель используют для стерилизации чистой воды и обеззараживания сточных вод.

    Работа с презентацией запись в тетрадь.

    Что ответить человеку, которого интересует, как решать окислительно-восстановительные реакции? Они нерешаемы. Впрочем, как и любые другие. Химики вообще не решают ни реакции, ни их уравнения. Для окислительно-восстановительной реакции (ОВР) можно составить уравнение и расставить в нём коэффициенты. Рассмотрим, как это сделать.

    Окислитель и восстановитель

    Окислительно-восстановительной называют такую реакцию, в ходе которой изменяются степени окисления реагирующих веществ. Это происходит потому, что одна из частиц отдаёт свои электроны (её называют восстановителем), а другая – принимает их (окислитель).

    Восстановитель, теряя электроны, окисляется, то есть повышает значение степени окисления. Например, запись: означает, что цинк отдал 2 электрона, то есть окислился. Он восстановитель. Степень окисления его, как видно из приведённого примера, повысилась. – здесь сера принимает электроны, то есть восстанавливается. Она окислитель. Степень окисления ее понизилась.

    У кого-то может возникнуть вопрос, почему при добавлении электронов степень окисления понижается, а при их потере, напротив, повышается? Всё логично. Элеrтрон – частица с зарядом -1, поэтому с математической точки зрения запись следует читать так: 0 – (-1) = +1, где (-1) – и есть электрон. Тогда означает: 0 + (-2) = -2, где (-2) – это и есть те два электрона, которые принял атом серы.

    Теперь рассмотрим реакцию, в которой происходят оба процесса:

    Натрий взаимодействует с серой с образованием сульфида натрия. Атомы натрия окисляются, отдавая по одному электрону, серы – восстанавливаются, присоединяя по два. Однако такое может быть только на бумаге. На самом же деле, окислитель должен присоединить к себе ровно столько электронов, сколько их отдал восстановитель. В природе соблюдается баланс во всем, в том числе и в окислительно-восстановительных процессах. Покажем электронный баланс для данной реакции:

    Общее кратное между количеством отданных и принятых электронов равно 2. Разделив его на число электронов, которые отдает натрий (2:1=1) и сера (2:2=1) получим коэффициенты в данном уравнении. То есть в правой и в левой частях уравнения атомов серы должно быть по одному (величина, которая получилась в результате деления общего кратного на число принятых серой электронов), а атомов натрия – по два. В записанной схеме же слева пока только один атом натрия. Удвоим его, поставив коэффициент 2 перед формулой натрия. В правой части атомов натрия уже содержится 2 (Na2S).

    Мы составили уравнение простейшей окислительно-восстановительной реакции и расставили в нем коэффициенты методом электронного баланса.

    Рассмотрим, как “решать” оислительно-восстановительные реакции посложнее. Например, при взаимодействии концентрированной серной кислоты с тем же натрием образуются сероводород, сульфат натрия и вода. Запишем схему:

    Определим степени окисления атомов всех элементов:

    Изменили ст.о. только натрий и сера. Запишем полуреакции окисления и восстановления:

    Найдём наименьшее общее кратное между 1 (столько электронов отдал натрий) и 8 (количество принятых серой отрицательных зарядов), разделим его на 1, затем на 8. Результаты – это и есть количество атомов Na и S как справа, так и слева.

    Запишем их в уравнение:

    Перед формулой серной кислоты коэффициенты из баланса пока не ставим. Считаем другие металлы, если они есть, затем – кислотные остатки, потом Н, и в самую последнюю очередь проверку делаем по кислороду.

    В данном уравнении атомов натрия справа и слева должно быть по 8. Остатки серной кислоты используются два раза. Из них 4 становятся солеобразователями (входят в состав Na2SO4)и один превращается в H2S,то есть всего должно быть израсходовано 5 атомов серы. Ставим 5 перед формулой серной кислоты.

    Проверяем H: атомов H в левой части 5×2=10, в правой – только 4, значит перед водой ставим коэффициент 4 (перед сероводородом его ставить нельзя, так как из баланса следует, что молекул H2S должно быть по 1 справа и слева. Проверку делаем по кислороду. Слева 20 атомов О, справа их 4×4 из серной кислоты и еще 4 из воды. Все сходится, значит действия выполнены правильно.

    Это один вид действий, которые мог иметь в виду тот, кто спрашивал, как решать окислительно-восстановительные реакции. Если же под этим вопросом подразумевалось “закончите уравнение ОВР” или ” допишите продукты реакции “, то для выполнения такого задания мало уметь составлять электронный баланс. В некоторых случаях нужно знать, каковы продукты окисления/восстановления, как на них влияет кислотность среды и различные факторы, о которых пойдет речь в других статьях.

    Окислительно-восстановительные реакции – видео